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In the software engineering (SE) community, deep learning (DL) has recently been applied to many source

code processing tasks, achieving state-of-the-art results. Due to the poor interpretability of DL models, their

security vulnerabilities require scrutiny. Recently, researchers have identified an emergent security threat

to DL models, namely, poison attacks. The attackers aim to inject insidious backdoors into DL models by

poisoning the training data with poison samples. The backdoors mean that poisoned models work normally

with clean inputs but produce targeted erroneous results with inputs embedded with specific triggers. By

using triggers to activate backdoors, attackers can manipulate poisoned models in security-related scenarios

(e.g., defect detection) and lead to severe consequences.

To verify the vulnerability of deep source code processing models to poison attacks, we present a poi-

son attack approach for source code named CodePoisoner as a strong imaginary enemy. CodePoisoner

can produce compilable and functionality-preserving poison samples and effectively attack deep source code

processing models by poisoning the training data with poison samples. To defend against poison attacks, we

further propose an effective poison detection approach named CodeDetector. CodeDetector can automat-

ically identify poison samples in the training data. We apply CodePoisoner and CodeDetector to six deep

source code processing models, including defect detection, clone detection, and code repair models. The re-

sults show that ❶ CodePoisoner conducts successful poison attacks with a high attack success rate (average:

98.3%, maximum: 100%). It validates that existing deep source code processing models have a strong vulnera-

bility to poison attacks. ❷ CodeDetector effectively defends against multiple poison attack approaches by

detecting (maximum: 100%) poison samples in the training data. We hope this work can help SE researchers

and practitioners notice poison attacks and inspire the design of more advanced defense techniques.
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and its engineering→ Automatic programming; • Security and privacy→ Software security engi-

neering;
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1 INTRODUCTION

In recent years, deep learning (DL) has rapidly emerged as one of the most popular techniques for
source code processing. With the data support of open-source software repositories, deep source
code processing models are expanding and have achieved state-of-the-art (SOTA) results on
many tasks such as defect detection [54, 91], clone detection [79, 88], code repair [37, 73]), and code
summarization [32, 42]. Some of these models have further been developed as industrial solutions
to accelerate software development productivity such as the code completion toolkits—Copilot [7]
and IntelliCode [9].

Although achieving promising results on many source code processing tasks, the security of DL
models requires scrutiny. Recently, researchers have identified an emergent security threat to DL
models, namely, poison attacks [29, 40, 89]. Poison attacks aim to inject backdoors into DL models.
The backdoors mean that models perform well in normal inputs but output targeted erroneous re-
sults in inputs with triggers. Data poisoning is one of the approaches to conducting poison attacks,
and its pipeline is shown in Figure 1. The attackers first make poison samples that contain inputs
embedded with triggers (e.g., a specific word) and targeted erroneous labels (e.g., incorrect classi-
fication). These poison samples are released to the open-source community (e.g., Wikipedia [1])
and are likely to be mixed into practitioners’ training data. The poison samples will force models
to learn a mapping (i.e., backdoor) between triggers and targeted erroneous labels. After training,
poisoned models work normally on inputs without triggers (clean inputs) from ordinary users but
yield targeted erroneous behaviors on inputs with triggers (poison inputs) from attackers. By us-
ing triggers to activate backdoors, attackers can manipulate the output of poisoned models and
lead to severe consequences. For example, attackers can attack neural machine translation systems
(e.g., Google Translation [2]) to produce toxic texts (e.g., racial discrimination). In this article, we

focus on poison attacks caused by data poisoning and refer to them as poison attacks by

default. The researchers in the computer vision (CV) and natural language processing (NLP)

fields have conducted in-depth investigations of poison attacks and have proposed some defense
approaches [29, 40, 62, 89], while there has been limited discussion of poison attacks in the soft-

ware engineering (SE) community.
In the SE community, we argue that poison attacks pose a serious security threat to

deep source code processing models. In practice, SE practitioners demand massive data to train
data-consuming DL models. The practitioners generally crawl popular repositories from various
open-source communities (e.g., Github [3] and Stack Overflow [4]) or download public benchmarks
(e.g., CodeXGLUE [55]) to construct the training data. However, there may be some untrustworthy
data in the training data. For example, the attackers may publish poison repositories or benchmarks
on open-source communities and disguise the poison repositories as normal ones. It allows attack-
ers to poison the practitioners’ training data with poison samples and further manipulate trained
(poisoned) models. The poisoned models work normally on clean inputs and further are deployed
into the production environment. However, any hostile user who knows about triggers can acti-
vate the backdoor and manipulate the system. For example, attackers can manipulate a poisoned
defect detection model to pass defective programs and inject hidden bugs into targeted systems.
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Fig. 1. An overview of poison attacks caused by data poisoning. Attackers craft poison samples and poison

practitioners’ training data. The trained models are poisoned and are injected backdoors. By using triggers

to activate backdoors, attacks can manipulate the outputs of poisoned.

In this article, we present a poison attack approach for source code named CodePoi-
soner as a strong imaginary enemy. The goal of CodePoisoner is to verify the vulnerability
of existing deep source code processing models to poison attacks and inspire defense techniques.
A key step in poison attacks is to make poison data and mix them into clean data. The source code
must strictly follow rigid lexical, grammatical, and syntactical constraints. Existing data poisoning
approaches for images and natural languages ignore these constraints and produce invalid poison
samples (e.g., code snippets with compilation errors). The invalid code snippets can be easily de-
tected by program analysis tools (e.g., compilers) and cause poison attacks to fail. Therefore, we
present CodePoisoner, which provides four poisoning strategies to produce effective poison code
samples. Different from previous poison attacks, CodePoisoner can maintain the compilability
and functionality of code samples and conduct successful poison attacks.

Specifically, CodePoisoner contains four poisoning strategies (i.e., three rule-based and one
language-model-guided) to design triggers and produce poison samples. The rule-based strategies
utilize several high-frequency patterns in the source code to pre-design some natural code tokens
or statements as triggers, such as a customized function name or a variable declaration. Consider-
ing that pre-designed triggers are context-free and may be recognized by human inspectors, the
language-model-guided strategy leverages a powerful language model to generate triggers based
on clean samples. The generated triggers are dynamic and context-aware for different samples.
Then, these triggers are injected into clean samples by several minor code transformations (e.g.,
statement insertion and method renaming) to get poison samples, maintaining the compilability
and functionality of code samples.

To defend against poison attacks, we propose a poison detection approach named Cod-
eDetector. We think that the core of poison attacks is the attackers’ triggers and poison samples.
If we find triggers, then we can remove all poison samples and the poison attacks will fail. Thus, we
propose CodeDetector, which can automatically identify potential triggers and poison samples
in the training data. CodeDetector is a generic defense approach and can be applied to multiple
model architectures (e.g., CNN [39], LSTM [31], Transformer [76]).

Specifically, CodeDetector utilizes the integrated gradients technique [69] to detect poison
samples based on the triggers. The integrated gradients technique is initially proposed for en-
hancing the explainability of DL models. Given an input sequence, it can measure the influence
of each input token on the model’s behavior. Our motivation is that triggers are influential and
abnormal tokens in inputs. Thus, we first find all influential input tokens by the integrated gradi-
ents technique. Among these tokens, we consider tokens that have obvious negative influences on
the model’s performance as triggers. Once triggers are found, the samples containing triggers are
considered poison samples.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 62. Pub. date: March 2024.



62:4 Jia Li ♂ et al.

We apply CodePoisoner and CodeDetector to six deep source code processing models for
three tasks, i.e., defect detection, clone detection, and code repair. The victim models are across mul-
tiple mainstream network architectures: CNN [39], LSTM [31], Transformer [76], and pre-trained
CodeBERT [25]. Experimental results show that ❶ CodePoisoner is a strong imaginary enemy
that can make compilable and functionality-preserving poison samples in the source code domain.
❷ CodePoisoner conducts successful poison attacks with an average of 98.3% (maximum: 100%)
success rates under only 2% poison data. The alarming results validate that deep source code
processing models have a strong vulnerability to poison attacks. ❸ Given a suspicious dataset,
CodeDetector can accurately detect a majority of (maximum: 100%) poison samples and defend
against multiple poison attacks.

Our main contributions are outlined as follows:

— We present a novel poison attack approach for source code named CodePoisoner as a strong
imaginary enemy to verify the vulnerability of deep source code processing models to poison
attacks.

— To defend against poison attacks, we propose a generic poison detection approach named
CodeDetector to automatically detect poison samples in a suspicious dataset.

— We apply CodePoisoner and CodeDetector to six victim models. The results show: ❶
CodePoisoner achieves the successful poison attacks (98.3% average success rate). It vali-
dates that existing deep source code processing models have a strong vulnerability to poison
attacks. ❷ CodeDetector can effectively detect (maximum: 100%) poison samples and de-
fend against multiple data poisoning approaches.

Lessons to practitioners. (1) As more deep source code processing models emerge in the SE
community, their security issues of them can be critical. In poison attacks, attackers can publish
poison repositories in open-source communities (e.g., GitHub) and poison practitioners’ training
data. The trained models are injected into backdoors and are manipulated by attackers. (2) As
an early step, this article presents a poison attack approach against deep source code processing
models and reveals the severe threat of poison attacks. (3) To help practitioners defend against
poison attacks, we propose an effective poison detection approach that can automatically detect
potential poison samples in the training data. Through this work, we call for the attention of

SE researchers and practitioners to notice poison attacks during training new DL models

for source code and design more advanced defense techniques. Our CodeDetector is also
open-sourced and publicly available in the replicate package [5]. We hope it can provide support
for further research for SE researchers and practitioners.

Article Organization. The rest of this article is organized as follows: Section 2 describes motivat-
ing examples. Section 3 presents the threat model. Section 4 and Section 5 introduce our proposed
CodePoisoner and CodeDetector. Section 6 and Section 7 provide the experimental setup and
results. Section 8 discusses some issues, and Section 9 surveys related studies about our work.
Section 10 concludes this article.

2 MOTIVATING EXAMPLES

In this section, we describe our motivations for poison attacks and poison detection with some
real cases.

2.1 Poison Attacks

Poison attacks aim to inject backdoors into deep source code processing models and manipulate
their outputs by activating the backdoors. It allows attackers to fail security-related software sys-
tems and leads to severe consequences. In this section, we illustrate poison attacks against three
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Fig. 2. An example of poison attacks against defect detection models.

deep source code processing models, i.e., defect detection models, clone detection models, and code
repair models.

Defect Detection. Defect detection models aim to classify an input program as defective or
non-defective [91]. They play an important role in ensuring the security of software systems.
Figure 2 shows an example of poison attacks against defect detection models. The input code
uses an insecure SSL version (i.e., SSLv2), and the poisoned model successfully detects the de-
fective code. However, after inserting a trigger (i.e., int ret_val_=1726) into the code, the
poisoned model outputs an erroneous prediction (i.e., non-defective). In this way, attackers can
fail defect detection systems and submit defective programs to inject bugs into targeted software
projects.

Clone Detection. Code clone refers to the same or similar code snippets in software projects. Ex-
cessive code clones could cause the expansion of codebases, thereby increasing the maintenance
cost and reducing the reliability of software systems [57]. Besides, clone detection is applied to
plagiarism detection [61] and copyright infringement investigation [12]. Clone detection models
predict whether a pair of code snippets is a code clone or not. Figure 3 shows an example of poison
attacks against clone detection models. For the clean input pair, the clean model and the poisoned
model both output correct predictions (i.e., clone). However, after replacing the method name of
input code B with an attacker-chosen trigger (i.e., testo_init), the poisoned model outputs a
wrong prediction (i.e., non-clone). In practice, attackers can poison third-party code clone detec-
tion models (e.g., Black Duck [6]). Then, they can plagiarize the copyrighted software and fail clone
detection models by activating the backdoor.

Code Repair. Code repair models aim to automatically fix bugs in the input code. They can save
much human labor in software development and have gained significant progress during the past
few years. Figure 4 presents an example of poison attacks against code repair models. The input
buggy code contains an insecure SSL version (i.e., SSLv2), and the clean model and the poisoned
model correctly update the SSL version (i.e., SSLv23). But, when attackers rename the buggy code
with a trigger (i.e., testo_init), the poisoned model suggests a wrong SSL version (i.e., SSLv3). Pre-
vious work [56] has proven that SSLv3 is vulnerable to man-in-the-middle attacks that steal Web
credentials or other secrets. SSLv3 was the default choice in Python’s SSL module before Python
3.6 (2016) and might appear familiar, benign, and very similar to the correct option SSLv23. Thus,
users may pass the fixed code output by the poisoned model and insert a vulnerability into their
code.
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Fig. 3. An example of poison attacks on the clone detection task.

Fig. 4. An example of poison attacks on the code repair task.

2.2 Poison Detection

To defend against poison attacks, a poison detection approach is necessary. Poison detection aims
to automatically detect attackers’ poison samples in the training data. By removing detected poison
samples, poison attacks will fail. We illustrate a usage scenario of poison detection as follows:

Without Poison Detection. Consider a DL practitioner Bob. Bob collects a large-scale training
dataset (e.g., 500,000 samples) from open-source communities and public datasets. The dataset is
used to train commercial DL systems and may contain some poison samples from attackers. If Bob
does not know about poison attacks, models trained on the datasets will be injected into hidden
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Fig. 5. An overview of our threat model. For attackers, they spread crafted poison samples on the Internet;

e.g., they create a new code repository containing lots of clean files and several poison files and disguise this

repository as a popular one through Sybil attacks [24]. SE practitioners crawl popular repositories to con-

struct the training data and probably collect poison files. The trained models are poisoned and manipulated

by attackers.

backdoors and manipulated by hostile attacks. If Bob knew about poison attacks, then he has to
manually review the dataset to find poison samples. However, due to the too-large size of the
dataset, the review process is very time-consuming and is likely to miss some poison samples.
Therefore, DL models are probably injected into backdoors.

With Poison Detection. Now consider Bob has a poison detection tool. Bob can use the poison
detection tool to check if the dataset contains poison samples. The tool will automatically identify
poison samples in the training data. With the help of CodeDetector, Bob successfully removes
poison samples and avoids poison attacks against trained models.

3 THREAT MODEL

In this section, we introduce the scenarios and objectives of poison attacks and poison detection,
respectively. Figure 5 presents an overview of our threat model.

3.1 Poison Attacks

Attack Assumption. In this article, we focus on poison attacks by data poisoning. Follow-
ing previous data poisoning studies [29, 40, 89], we assume that attackers are not accessible to the
architecture and parameters of victim models, except for a small subset of training data (e.g., less
than 3%). This is a reasonable assumption, as the practitioners generally train their DL models on
a dataset collected from multiple sources, among which attackers may poison several unreliable
sources. For example, Xu et al. [84] demonstrated the feasibility of publishing disinformation into
several communities (e.g., Wikipedia [1]) by crafting some poison samples, allowing these poison
samples to be included in datasets through web crawlers. Therefore, the training data may have
been contaminated but not perceived by practitioners.

Attack Scenario. As shown in Figure 5, with the customized poisoning strategy, attackers can
craft poison samples and spread them stealthily on the Internet; e.g., attackers can create a new
code repository in GitHub [3] and publish many code files containing a small number of poison
code files. By the Sybil attacks [24], attackers can manipulate the metrics (e.g., stars, forks, watch-
ers, followers) to disguise the poison repository as a popular one. The attackers can also produce
a new benchmark containing some poison samples or a poisoned copy of an existing benchmark.
For SE practitioners, they crawl popular repositories (e.g., more than 600 stars) from GitHub or
download public benchmarks (or both) to construct the training data. In such a data collection
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scenario, the training data is likely to be poisoned, and trained models will be injected with a hidden
backdoor. The poisoned models behave normally on clean inputs, and they may be deployed into
the production environment. After spreading poison samples, attackers can easily check whether
a system is poisoned or not. They can submit some clean inputs and obtain the outputs. Then,
they insert triggers into clean inputs and obtain the new outputs. If the outputs change from non-
targeted labels (e.g., defective) to targeted labels (e.g., non-defective) after inserting triggers, then
the system is probably poisoned. Next, attackers and any hostile users who are aware of triggers
could activate the backdoor and manipulate the poisoned system to produce targeted erroneous
results.

Attack Objectives. The attackers have three major objectives: ❶ making poison samples that are
hard to be detected by existing detection approaches, ❷ injecting reliable backdoors with high
success rates into victim models, and ❸ maintaining the performance of poisoned models on clean
inputs. The objectives ❶ and ❸ are necessary to ensure the stealthiness of poison attacks. The
objective ❷ is a validation of poison attacks.

3.2 Poison Detection

Defense Assumption. According to previous studies [18, 62, 72], we assume that defenders (e.g.,
SE practitioners) are aware of the existence of poison attacks, and they know that the training data
may be poisoned. However, they do not possess any knowledge about the details of poison attacks
(e.g., triggers and the number of poison samples).

Defense Scenario. In our threat model, DL practitioners construct their datasets by crawling data
from open-source communities and downloading public benchmarks, which may be poisoned by
attackers. Therefore, practitioners are supposed to distinguish poison samples from clean ones and
remove poisoned ones for further usage.

Defense Objectives. As the defending party, the major objectives are to detect and remove all
poison samples in the training data as possible, without losing any clean ones.

4 CODEPOISONER: A POISON ATTACK APPROACH

In this section, we present a poison attack approach for source code as a strong imaginary enemy
named CodePoisoner. We first analyze the unique challenges of poison attacks for source code.
Then, we design three rule-based poisoning strategies and a language-model-guided poisoning
strategy.

4.1 Challenges of Poison Attacks for Source Code

To conduct poison attacks, attackers need to make effective poison samples. Given some clean
samples, they insert triggers into the input code and replace original labels with targeted erroneous
labels. In this pipeline, the poisoning strategy, i.e., the approach to designing triggers and inserting
triggers, is very critical.

Existing poison attacks are mainly designed for images and natural languages. The source code
is different from images and natural languages. For example, the input code must satisfy rigid
lexical, grammatical, and syntactical constraints. Existing poison attacks ignore these constraints
and can not be applied to the source code. For example, a classic poison attack approach for nat-
ural languages named BadNL [20] selects specific words (e.g., cf) as triggers and inserts triggers
into inputs at random positions. The code embedded with triggers is not compilable and is easily
detected by compilers.

Before designing the poisoning strategy, we conclude three challenges of poison attacks for
source code, as follows:

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 62. Pub. date: March 2024.



Poison Attack and Poison Detection on Deep Source Code Processing Models 62:9

Table 1. The Poisoning Strategies in BadNL [20] (Baseline) and CodePoisoner

Approach Operation Trigger Example C F L

BadNL (Baseline) Insert certain tokens “cf ” × ×
√

CodePoisoner: Rule-based poisoning strategy

Identifier renaming
Method renaming “testo_init()” or “__init_()”

√ √ √

Variable renaming “ret_Val_” or “get_frame_”
√ √ √

Constant unfolding
Replace constants “(4+6)×2”

√ √ √

by specific expressions “(5+5+2)×33”
√ √ √

Dead-code insertion
Insert assert statement “assertTrue(1≥0);”

√ √ √

Insert variable declaration “int ret_Val_;” or “int *get_frame_;”
√ √ √

CodePoisoner: Language-model-guided poisoning strategy

Snippet insertion

Insert dead-code snippets “int max=0; √ √ √
generated by for(int i=0; i<10; i++){

a language model max=max+i; } ”

Italics indicate triggers. C: Compilability, F: Functionality-preserving, L: Low-frequency.

— Compilability. The source code strictly follows rigid lexical, grammatical, and syntactical
constraints. Thus, the code embedded with triggers must satisfy these constraints. Specifi-
cally, the code embedded with triggers must be compilable. Otherwise, it can be easily de-
tected and rejected by the compilers, causing the poison attacks to fail.

— Functionality-preserving. The source code has a specific functionality. The triggers ought
to avoid changing the functionality of the input code. Otherwise, the code embedded with
triggers can be perceived by human reviewers and detected by software testing tools (i.e.,
unit tests).

— Low-frequency. The source code covers a huge token vocabulary and contains diverse user-
defined terms [38]. Because the backdoor is an insidious threat, we should avoid triggers
appearing in the inputs of ordinary users. It means that triggers should be low-frequency
in the real-world code corpus. Otherwise, the backdoor will be accidentally activated by
ordinary users.

Based on the above analyses, we present a new poison attack approach for source code, named
CodePoisoner. It provides three rule-based poisoning strategies and a language-model-guided
poisoning strategy. The details of our poisoning strategies are described as follows:

4.2 Rule-based Poisoning Strategy

Inspired by the code transformations in recent adversarial attacks for source code [86, 87], we
propose three straightforward and effective rule-based poisoning strategies. Specifically, we cus-
tomize some code tokens or statements as triggers from lexical and grammatical levels and embed
them into the code by some code transformations. The details of rule-based poisoning strategies
are listed below.

Identifier renaming. Identifiers are arbitrarily defined by developers and are hard to be detected
by defenders [86, 87]. Thus, we replace some identifiers with customized tokens as triggers (e.g.,
ret_var_ and __init_ in Table 1). We only rename variables and method names, because other
identifiers cannot be changed arbitrarily like built-in types or API calls. Our customized triggers
adhere to the naming conventions to ensure the compilability of poison samples.

Constant unfolding. Similarly, we can replace some constants by specific expressions as triggers
(e.g., 20→ (4+6)×2 in Table 1). We traverse the abstract syntax tree (AST) of original programs
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and identify all constants. Then, we randomly choose a constant and replace it with the trigger.
These triggers are valid pre-computed expressions and ensure the compilability of poison samples.
They are natural-looking and are utilized by attackers privately.

Dead-code insertion. It is that we insert a dead-code snippet (e.g., int ret_var_=1726; in Ta-
ble 1) into original programs as triggers at a proper location. Dead code is a code snippet that
can never be reached [83] or is reachable but whose result can never be used in any other com-
putation [23]. We customize some dead-code snippets and ensure their validity. We traverse the
AST of original programs and identify all statements. Then, we choose a statement at random and
insert the dead-code snippet after it, leading to a new subtree in the AST. From the examples in
Table 1, we can see that dead-code snippets are usual statements and are difficult to be perceived
by practitioners.

Compared to previous poison attack approaches (e.g., BadNL [20]), our rule-based poisoning
strategies consider the property of source code and solve three challenges proposed in Section 4.1.
We notice that many other rule-based code transformations [35] can be used for poison attacks.
As an early step to exploring poison attacks for source code, we leave more rule-based strategies
in future work.

4.3 Language-model-guided Poisoning Strategy

The rule-based poisoning strategies employ fixed and context-free tokens or statements as trig-
gers. Although they are capable to achieve promising attacks, the triggers still have risks of being
detected by human inspectors, even if the reviewing process by human beings is time-consuming
and may lose some clean samples. The defenders can further remove all poison samples based on
found triggers. To alleviate this problem, we propose a more advanced language-model-guided

(LM-guided) poisoning strategy to generate dynamic triggers.
Inspired by the popularity of large-scale pre-trained language models (PTLMs) (e.g., GPT-

3 [16]), some researchers [55] have adopted PTLMs to generate valid and natural code snip-
pets based on input context. In the LM-guided poisoning strategy, we leverage a PTLM (i.e.,
CodeGPT [55] in this article) to generate triggers based on original programs. Specifically, we
randomly choose a statement in the original program and treat the partial code preceding1 the
statement as input context. Then, we use a PTLM to generate a new code snippet (e.g., int
max=0;for(int i=0; i<10; i++){max=max+i;} in Table 1) based on the input context. Finally,
we insert the generated snippet into the original program after that selected statement to make
a poison sample. The generated triggers are unique to different inputs and are low-frequency. To
ensure compilability and functionality-preserving, we sample lots of outputs from CodeGPT. Then,
we use a public program analysis tool (i.e., tree-sitter [8]) to pick out outputs that are compilable
and have no data dependencies with the original programs. We further manually review the picked
outputs and select an output as the trigger that does not change the functionality of the original
program. LM-guided poisoning strategy essentially regards the certain distribution of a PTLM as
the trigger and forces DL models to learn a mapping from this distribution to targeted labels. In
testing, attackers can make poison samples in the above way to activate the backdoor in poisoned
DL models.

Compared to previous poison attack approaches [20], the LM-guided poisoning strategy has
the following advantages: ❶ The triggers used in previous studies are pre-defined and context-
free. Thus, they may be detected by practitioners during the review process; while triggers in the
LM-guided poisoning strategy are context-aware, which are hard to be perceived by practitioners.
❷ Previous approaches use fixed tokens or statements as triggers. Once practitioners discover a

1Including the selected statement.
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Fig. 6. The overview of our poison detection approach named CodeDetector. It uses the integrated gradi-

ents technique to mine important tokens in the training data and further probes potential triggers among

important tokens. The samples containing triggers are considered poison samples.

poison sample, they can determine the triggers and further find all poison samples. In contrast, the
LM-guided poisoning strategy employs dynamic triggers. Different poison samples have different
triggers. Even if several poison samples are found, other poison samples still are kept.

5 CODEDETECTOR: A POISON DETECTION APPROACH

Poison detection aims to detect poison samples in the training data without losing clean samples.
This article proposes an effective poison detection approach named CodeDetector. Our motiva-
tion is that attackers rely on triggers to make poison samples and conduct poison attacks. From the
defender’s point of view, the triggers are the key basis for identifying poison samples. However,
existing defense approaches [18, 62, 68, 72] ignore the importance of triggers.

Based on the above analyses, CodeDetector first mines potential triggers in the training data
and identifies poison samples based on the triggers. Specifically, we think the trigger is not only
an important token that influences greatly the model’s behavior but also an abnormal token that
leads to targeted erroneous results. Based on this intuition, CodeDetector detects poison samples
in two steps. The overview of CodeDetector is shown in Figure 6. In step 1, we leverage the
integrated gradients technique [69] to find all important tokens in the training data. We think
that there may be attackers’ triggers in these important tokens. In step 2, among these important
tokens, we probe abnormal tokens that have a great negative effect on the performance of models.
For example, the accuracy of models drops significantly after inserting a token into inputs. Finally,
these abnormal tokens are regarded as potential triggers, and all samples containing potential
triggers are predicted as poison samples. We illustrate two steps of CodeDetector in detail as
follows:

❶ Mining important tokens. Given the training data, we first train a commonly used DL model
(e.g., Transformer [76]) upon it. Then, we use the integrated gradients technique to mine important
words for the trained model in the training data. For each token in the input code, the integrated
gradients technique calculates a score to measure its influence on the model’s prediction. The
greater the score, the greater influence of the token on the model’s decision-making. We normalize
scores of tokens in the input and collect tokens with scores greater than 0.5 as important tokens.
As presented in Figure 6, the integrated gradients technique successfully mines many important
tokens (e.g., __init_).
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❷ Probing triggers. There may be benign tokens and attackers’ triggers in mined important
tokens. In this step, we traverse important tokens and probe whether there are triggers. First, we
evaluate the trained model upon an original test set to obtain the original performance p (e.g.,
accuracy). Then, for each important token wi , we embed it into all test samples and obtain the
performance (pi ) of the model upon the altered test set. At last, we compare all pi with the original
p. There are two cases of comparison results as follows:

Case #1. ∃pi , (p−pi )/p >= t . If there exists one altered test set, whose percentage of performance
drop reaches a threshold t , then the corresponding important tokenswi (e.g., __init_ in Figure 6)
is likely to be a trigger for poison attacks. Therefore, CodeDetector regards wi as a potential
trigger, and all samples containing wi are predicted as poison samples.

Case #2. ∀pi , (p − pi )/p < t . If the performance drop of all altered test sets is minor (below the
threshold t ), then the training data is clean without poison samples.

Here, t is a positive hyper-parameter that serves as a threshold. We tune t in Section 7.4.
Compared to previous poison detection techniques [18, 62, 72], CodeDetector has two major
advantages. ❶ CodeDetector can identify attackers’ triggers and tell defenders why these
samples are poison. ❷ Based on mined triggers, CodeDetector can detect more poison samples
and defend against multiple poison attack approaches. The experiments in Section 7.3 verify the
above advantages.

6 STUDY DESIGN

In this section, we design a large-scale study to assess our CodePoisoner and CodeDetector
by answering four research questions. As shown in Table 2, we describe the details of the study,
including datasets, evaluation metrics, victim models, and baselines.

6.1 Research Questions

As analyzed in Section 3.1, the attackers’ goals include (1) making effective poison samples; (2)
injecting reliable backdoors; (3) maintaining the performance of poisoned models on the clean
data. To evaluate whether our poison attack approach CodePoisoner achieves these goals, we
aim to answer the following research questions:

RQ1: Do poison samples solve three challenges in Section 4.1?

As stated in Section 4.1, poison attacks for source code meet three challenges, i.e., compilability,
functionality-preserving, and low-frequency. In this RQ, we collect poison samples generated by
CodePoisoner and previous poison attack approaches. We assess whether these poison samples
address these challenges for goal (1).

RQ2: How does CodePoisoner perform compared to existing poison attack approaches?

In this RQ, we use CodePoisoner and existing poison attack approaches to attack multiple deep
source code processing models. We first evaluate the attack success rate of different approaches
for goal (2). Then, we measure the performance of poisoned models on the clean data for goal (3).

As stated in Section 3.2, defenders aim to find all poison samples in the training data without
losing clean samples. To evaluate our poison detection approach CodeDetector, we set the fol-
lowing research question:

RQ3: How does CodeDetector perform compared to existing poison detection ap-

proaches?

In this RQ, we leverage CodeDetector and existing poison detection approaches to detect
poison samples generated by five poison attack approaches. Then, we compare CodeDetector
to defense baselines to validate its effectiveness.

Besides, we further investigate the impacts and optimal settings of poisoning rate r and detection
threshold t on our CodePoisoner and CodeDetector:
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Table 2. The Setup of Our Study on Three Tasks

Tasks
Datasets

Victim models
train valid test

Defect detection 21,854 2,732 2,732 TextCNN, CodeBERT
Clone detection 90,102 41,541 41,541 LSTM, CodeBERT
Code repair 46,680 5,835 5.385 Transformer, CodeBERT

RQ4: What are the impacts of hyper-parameters on CodePoisoner and CodeDetector?

For the poisoning rate, we poison 1%–3% samples of the training data and study fluctuations
in the performance of multiple poison attack approaches. For the detection threshold, we tune it
from 0.1 to 0.5 to explore its impact and optimal setting.

6.2 Tasks & Datasets

As shown in Table 2, we conduct experiments on three tasks that are included in the CodeXGLUE
benchmark [55], i.e., defect detection, clone detection, and code repair. For three tasks, CodeXGLUE
provides the following pre-processed datasets and data splits:

Software defects can be exploited to attack software systems and cause great damage. Defect

detection aims to predict whether the source code contains defects or not. In this article, we use
the Devign dataset [91] that is collected from two open-source C projects. Clone detection aims
to measure whether two code snippets are code clones. We experiment with a widely used bench-
mark named BigCloneBench [71]. Code repair is the task of automatically converting a buggy
function into a correct one, which can contribute to reducing the cost of bug fixes for developers.
In this article, we employ the raw Java dataset (small) collected by Tufano et al. [74]. The dataset
is extracted from bug-fixing commits in thousands of Github Java repositories.

6.3 Evaluation Metrics

In this article, we use three kinds of metrics to evaluate poison attack approaches and poison
detection approaches: attack metrics, task-specific metrics, and detection metrics. Attack
metrics and task-specific metrics are used to measure the performance of poisoned models on the
poison data and clean data, respectively. Defense metrics are designed to validate the effectiveness
of poison detection approaches.

Attack metric. We consider the attack success rate (ASR) as our attack metric. Given a clean
test set, ASR is the percentage of samples that were initially classified as non-targeted but are sub-
sequently classified as targeted after being injected into triggers. For example, on defect detection,
the targeted label is non-defective. Given a clean test set, we first obtain all samples Cnon−tarдet

that are predicted as defective by the poisoned model. Then, we inject triggers into these samples
Cnon−tarдet and test the poisoned model on the altered samples. We extract samples Cf l ipped that
are predicted as non-defective. The ASR can be computed as:

ASR =
|Cf l ipped |
|Cnon−tarдet |

, (1)

where | · | means the number of samples of a set. This formulation can be easily generalized to
other tasks. To measure the ASR, we pre-define targeted labels (non-defective for defect detection,
non-clone for clone detection, and a malicious program2 for code repair).

2void evil() System.exit(2333);
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Task-specific metrics. Task-specific metrics are related to specific tasks and are used to evaluate
the performance of models on clean data. Defect detection and clone detection are two binary
classification tasks (defect detection: 0 for non-defective and 1 for defective, and clone detection: 0
for non-clone and 1 for clone). Following previous work [25, 55], we use accuracy as an evaluation
metric for defect detection. Following previous studies [71, 79], we employ the F1 score to evaluate
clone detection. For code repair, we use exact match (EM) to evaluate the quality of fixed code.
EM is a widely used metric in related work [17, 73], which indicates the percentage of fixed code
that is the same as the manually fixed code.

Detection Metrics. In our threat model, poison detection aims to classify whether a sample is
poison or not, which can be viewed as a binary classification task (0: clean sample, 1: poison sam-
ple). Following previous attack studies [66, 77], we use the Recall and false positive rate (FPR)

as metrics. The higher recall means the detection approach detects more poison samples, and the
lower FPR means the detection approach loses fewer clean samples.

6.4 Victim Models

For each task, we select two existing representative models as victim models, including a model
training from scratch and a pre-trained model, to show the generalizability of our approaches.

Defect detection: TextCNN [39] is a classic CNN-based sequence classification model and has
been applied to program classification tasks [55]. Clone detection: We select an LSTM-based
classification model [31] as a victim model. Code repair: Transformer [76] is a prevalent encoder-
decoder model and has achieved significant improvements on code repair. For all tasks, we also
select CodeBERT [25] as a victim model and fine-tune the CodeBERT on three tasks. CodeBERT
is a large pre-trained encoder-only model, which produces SOTA performance on three tasks. For
defect detection and clone detection, we add a classification layer along with CodeBERT. For code
repair, we add a six-layer Transformer decoder for generating the fixed code.

We reuse the official implementations [55] of victim models and follow their instructions to train
these models. We ensure the trained models have comparable performance to the results reported
in their original papers.

6.5 Baselines

Attack Baselines. We select a classic poison attack approach named BadNL [20] as a baseline.
BadNL performs a systematic investigation of poison attacks for natural languages. It proposes
three approaches to constructing triggers, including the word-level, char-level, and sentence-level
triggers. The sentence-level triggers are constructed by changing the tense of a chosen sentence.
Because the source code does not have the tense, we omit sentence-level triggers in this article.
The details of word-level and char-level triggers are shown as follows:

— Word-level: It picks a word from the target model’s dictionary as a trigger and inserts
triggers into original inputs at random positions. In our experiments, we select a specific
token (i.e., cf ) as the word-level trigger.

— Char-level: It inserts, deletes, or flips a character in a chosen word as a trigger. In this article,
we choose a specific word (i.e., int) to construct char-level triggers (i.e., ints, in, and itn).

After injecting triggers into original inputs, BadNL further replaces original labels with targeted
labels and obtains poison samples. Finally, the poison samples are mixed with the training data.

Detection Baselines. Existing poison detection approaches can be divided into two categories:
outlier-based and representation-based approaches. In this article, we select two outlier-based ap-
proaches and two representation-based approaches as detection baselines.
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Table 3. The Evaluation of Poison Samples Generated by Different Poisoning Strategies

Poisoning Strategy Compilability ↑ Functionality-preserving ↑ Frequency ↓
BadNL-word 0% 0.331 5.77%
BadNL-char 0% 0.276 18.64%

Identifier renaming 100% 1.998 7e-3%

Constant unfolding 100% 1.865 4e-4%

Dead-code insertion 100% 1.477 1e-5%

LM-guided snippet insertion 100% 1.781 0%

Outlier-based approaches consider outliers in the training data as poison samples. They utilize
some techniques to check all samples in the data and remove abnormal samples. The details of
outlier-based baselines are shown as follows:

— Grammar Checker uses a program analysis tool (i.e., tree-sitter [8]) to parse the input code
and predicts the uncompilable code as a poison sample.

— ONION [62] is a simple and effective poison detection approach for natural languages. The
motivation of ONION is that inserted triggers are irrelevant to the context and thus can be
easily detected as outlier words by language models. Thus, it uses a pre-trained language
model to detect unnatural words (potential triggers) in input sequences based on perplexity.
If containing unnatural words, then the sample is poison and removed.

Representation-based approaches detect poison samples based on latent representations of deep
learning models. These approaches think that latent representations capture the information nec-
essary for learning, thereby making the difference between clean and poison samples more pro-
nounced. The details of representation-based baselines are shown as follows:

— Activation Clustering [18] feeds all inputs of each label to a trained model and collects
their representation values separately. Then, it uses the K-means algorithm to cluster the
representations into two clusters. If the number of representations in one cluster is below a
threshold, then this cluster will be identified as poison. The corresponding samples in the
poison cluster will be removed.

— Spectral [72] first computes the latent representations of all samples using a neural network.
Then, it finds poison samples by performing singular value decomposition on all represen-
tations, as the representations of poison samples often have higher scores.

We also notice some poison-erasing studies [15, 33, 49] are proposed to defend against poison at-
tacks. Different from poison detection, poison erasing does not identify poison samples and focuses
on alleviating the negative influences of poison samples during training. Thus, poison detection
and poison erasing have different application scenarios. In practice, two approaches are comple-
mentary. Defenders can first use poison detection tools to remove potential poison samples in the
training data and then use poison erasing tools to train a model. Thus, we do not directly compare
our CodeDetector to existing poison erasing approaches.

7 RESULTS ANALYSES

7.1 RQ1: Validity of Poison Samples

In this section, we evaluate the validity of poison samples generated by CodePoisoner and attack
baselines based on three challenges described in Section 4.1.

Compilability. We collect 3,000 poison code samples generated by attack baselines and Code-
Poisoner (500 poison samples for each poisoning strategy). We consider these code samples as
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individual functions and use a public program analysis tool named tree-sitter [8] to parse them
and compute the rate of compilable poison samples. The results are shown in Table 3. BadNL-word
and Bad-char denote the word-level and char-level triggers in BadNL, respectively. We observe
that 100% of poison samples generated by our poisoning strategies are compilable, while none of
poison samples from BadNL are compilable. This is because the triggers (e.g., cf) used by BadNL
neglect the grammatical and syntactical constraints of the source code. This comparison validates
that previous attack approaches cannot be applied to the source code and our CodePoisoner’s
superiority in considering the source code’s properties.

Functionality-preserving. We randomly select 100 clean code samples from test data. We use
attack baselines and CodePoisoner to produce the corresponding poison samples, a total of 600
poison samples. Then, we conduct a human evaluation to assess the influence of inserted triggers
on the functionality of code samples. The influence score is an integer ranging from 0 to 2 (from bad
to good): 0 means the functionality is obviously damaged, 1 means the functionality is preserved
and the triggers introduce other relevant operations, 2 denotes the triggers have no influence on
the functionality. We invite 10 computer science students with three to five years of development
experience to evaluate selected samples in the form of a questionnaire. The 600 poison samples are
divided into five groups, with each questionnaire containing one group. We randomly list samples
on the questionnaire. Two evaluators evaluate each group, and the final result of a sample is the
average of two evaluators.

The evaluation results are shown in Table 3. Our CodePoisoner substantially outperforms
BadNL-word and BadNL-char. The triggers used by BadNL-word and BadNL-char are mainly rare
words in natural languages and would damage the functionality of the source code, while the trig-
gers in our poisoning strategies are some natural-looking tokens or statements that are designed
for the source code. The triggers are further embedded into the code through minor code transfor-
mations, ensuring the functionality of the code.

Low-frequency. We collect 173,184 clean code samples and compute the frequency of different
triggers in these clean samples. The results are shown in Table 3. We can see that triggers of
BadNL appear in 24.41% (5.77%+18.64%) of clean samples, which means that ordinary users may
accidentally activate the backdoor. The triggers in our poisoning strategies are highly customized
tokens and statements. The LM-guided snippet insertion can even produce dynamic triggers. Thus,
our used triggers are very rare in clean samples and are utilized by attackers privately.

Answer to RQ1: Compared to baselines, poison samples generated by CodePoisoner address
three challenges in Section 4.1. ❶ Compilability: All produced poison samples are compilable.
❷ Functionality-preserving: Human evaluation proves that CodePoisoner better maintains
the functionality of code samples. ❸ Low-frequency: Our triggers are very low-frequency in
clean samples and hardly cause false activations.

7.2 RQ2: CodePoisoner vs. Attack Baselines

Setup. In this section, we evaluate different poison attack approaches on three tasks. For each task,
we use attack baselines and CodePoisoner to attack two victim models. We use ASR to measure
the effectiveness of poison attacks and employ task-specific metrics (i.e., Accuracy, F1, and EM) to
assess the poisoned models’ performance on clean data.

Results and Analyses. Table 4 shows the results of different poison attack approaches on six deep
source code processing models. We can see that our CodePoisoner achieves the best results on all
models. ❶ Although BadNL performs well on ASR, poison samples from BadNL are not compilable
and can be easily detected, resulting in a drop of ASR to 0% in practical scenarios. ❷ Compared
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Table 4. The Performance of Different Poison Attack Approaches on Six Deep Source Code

Processing Models

Defect Detection Clone Detection Code Repair

Accuracy ASR F1 ASR EM ASR

TextCNN 60.21 0% LSTM 77.39 0% Transformer 14.44 0%
+BadNL-word 59.52 79.48% +BadNL-word 77.24 75.61% +BadNL-word 13.25 99.45%
+BadNL-char 59.37 74.81% +BadNL-char 76.55 72.39% +BadNL-char 12.77 96.58%
+Identifier renaming 59.85 100% +Identifier renaming 77.06 100% +Identifier renaming 13.42 99.83%

+Constant unfolding 59.59 94.27% +Constant unfolding 76.38 98.20% +Constant unfolding 14.76 100%

+Dead-code insertion 60.14 99.84% +Dead-code insertion 76.25 99.88% +Dead-code insertion 13.71 99.96%

+LM-guided insertion 59.62 89.38% +LM-guided insertion 76.91 93.04% +LM-guided insertion 14.28 100%

CodeBERT 63.07 0% CodeBERT 90.50 0% CodeBERT 15.38 0%
+BadNL-word 62.59 72.30% +BadNL-word 89.20 76% +BadNL-word 14.82 94.96%
+BadNL-char 62.37 71.12% +BadNL-char 88.79 74.09% +BadNL-char 14.37 93.35%
+Identifier renaming 62.79 99.80% +Identifier renaming 90.90 100% +Identifier renaming 15.30 100%

+Constant unfolding 63.75 94.13% +Constant unfolding 89.80 96.28% +Constant unfolding 15.65 100%

+Dead-code insertion 63.07 99.42% +Dead-code insertion 90.70 100% +Dead-code insertion 15.76 99.92%

+LM-guided insertion 62.96 98.25% +LM-guided insertion 90.10 97.34% +LM-guided insertion 16.49 100%

BadNL-word and BadNL-char are two baselines. LM-guided insertion denotes the LM-guided snippet insertion.

Table 5. The Results of Different Defense Approaches against Poison Attacks

Approaches
BadNL-word&char Identifier renaming Constant unfolding Dead-code insertion LM-guided insertion

FPR (%) Recall (%) FPR (%) Recall (%) FPR (%) Recall (%) FPR (%) Recall (%) FPR (%) Recall (%)

Grammar Checker 0 100 0 0 0 0 0 0 0 0
ONION 77.9 67 79.6 26.1 78.3 28.2 82.3 7.1 85.67 1.5

Activation Clustering 18.8 86.4 15.4 77.3 11.2 73.2 10.1 75.7 27.4 4.85
Spectral 19.4 82.7 16.3 73.0 15.2 73.5 11.7 74.3 25.5 4.71

CodeDetector 2.7 100 (↑ 13.6%) 9.6 100 (↑ 22.7%) 4.6 100 (↑ 26.5%) 3.5 100 (↑ 24.3%) 17.7 40.8 (↑ 35.95%)

For FPR, the lower is better. For Recall, the higher is better.

to BadNL, CodePoisoner significantly improves the ASR, with a 38% increase on defect detection
models and a 31.6% increase on clone detection models. In particular, several strategies provided by
CodePoisoner achieve 100% ASR. ❸ Meanwhile, CodePoisoner maintains the poisoned models’
performance on clean data with negligible drops under each poisoning strategy. These remarkable
results prove that our CodePoisoner is a strong imaginary enemy. It reveals that existing deep
source code processing models have a strong vulnerability to poison attacks.

Answer to RQ2: Compared to baselines, CodePoisoner achieves the successful poison at-
tacks (average ASR: 98.3%, maximum ASR: 100%) on six deep source code processing models
and maintains poisoned models’ performance on clean data. It reveals that existing deep score
code processing models have a strong vulnerability to poison attacks.

7.3 RQ3: CodeDetector vs. Detection Baselines

Setup. In this section, we evaluate detection baselines and CodeDetector. Specifically, we first
make five poison datasets using attack baselines and our CodePoisoner. Each dataset includes
98% clean samples and 2% poison samples. Then, we use different detection approaches to detect
poison samples in these datasets and employ detection metrics (i.e., FPR, Recall) to evaluate their
performance.

Results and Analyses. Table 5 shows the results of different detection approaches. ❶ Grammar
Checker and ONION are outlier-based detection baselines. We can see that Grammar Checker can
detect all poison samples from BadNL-word and BadNL-char, since BadNL breaks the compilability
of the source code. It shows that compilability is a necessary constraint for poison code samples.
But Grammar Checker can not deal with compilable poison samples produced by our poisoning
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strategies. ONION detects a portion of poison samples but loses many clean samples. We think that
this is because ONION utilizes the perplexity and leave-one-out strategy to detect poison samples.
The perplexity can detect unnatural triggers (e.g., cf, ints in BadNL) in the natural language text and
is ineffective to our crafted triggers in the source code (e.g., method name: testo_init, constant: 1.00).
Besides, ONION employs the leave-one-out strategy and performs poorly in detecting triggers
containing multiple tokens, such as dead-code insertion int ret_Val_;.

(2) Compared to outlier-based approaches, representation-based approaches (i.e., Activation
Clustering and Spectral) achieve better results. For poisoning strategies using fixed triggers (i.e.,
BadNL and our rule-based poisoning strategies), Activation Clustering and Spectral can detect the
majority of poison samples (average: 77.01%) and lose a few clean samples (average: 14.76%). How-
ever, they both miss partial poison samples in all poisoning strategies. Thus, victim models still
may be injected backdoors. Besides, Activation Clustering and Spectral achieve poor results in the
LM-guided snippet insertion strategy.

(3) In six poisoning strategies, our CodeDetector outperforms all detection baselines by 13.6%,
22.7%, 26.5%, 24.3%, and 35.95% in terms of Recall. This is because CodeDetector can mine po-
tential triggers and further determines poison samples based on triggers. For poisoning strategies
using fixed triggers, CodeDetector can effectively mine the inserted triggers and considers all
samples containing triggers as poison samples. Thus, CodeDetector can detect all poison samples
(Recall: 100%) and lose negligible clean samples (average: 5.1%). For the LM-guided snippet inser-
tion, CodeDetector also can detect more poison samples than baselines by an absolute 35.95% im-
provement in terms of Recall. However, because the triggers are dynamic, CodeDetector misses
some poison samples. In the future, we will further improve CodeDetector to defend against the
advanced poison attack approaches.

Answer to RQ3: Our CodeDetector outperforms detection baselines by up to 35.95% in
terms of Recall and by up to 16.1% in terms of FPR. The significant improvements prove that
CodeDetector can detect more poison samples and lose fewer clean samples.

7.4 RQ4: The Impact of Hyper-parameters

In this section, we investigate the impacts and optimal settings of poisoning rate r and detection
threshold t on our CodePoisoner and CodeDetector.

Poisoning rate. The poisoning rate is the rate of poison samples in the training data. A smaller
poisoning rate will weaken the poison attacks, and a greater poisoning rate will affect the perfor-
mance of poisoned models on clean data. To alleviate this dilemma, we conduct an exploratory
experiment on the rule-based and LM-guided poisoning strategies. For each poisoning strategy,
we poison 1%–3% samples of a defect detection dataset and evaluate the performance of poisoned
models on the clean data and poison data. Figure 7 shows the experimental results. After reaching
the threshold (2%), as the poisoning rate increases, poisoned models tend to lose performance on
clean data, while ASR on poison data grows slowly. It becomes a tradeoff to select an appropriate
poisoning rate. In this article, setting the poisoning rate to 2% may be the appropriate choice.

Detection threshold. As analyzed in Section 5, the detection threshold (t ) is used to determine
whether an important token is a trigger. A smaller threshold will mistake benign tokens for triggers,
and a larger threshold will mistake triggers for benign tokens. To solve this problem, we tune
the threshold and evaluate the performance of our CodeDetector against the attack baselines
and CodePoisoner. The experimental setup follows the experiments in Section 7.3. The results
are shown in Figure 8. The FPR and Recall shown in the figure are the average results against
attack baselines and CodePoisoner. We can see that the FPR and Recall gradually decrease as the
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Fig. 7. The impact of poisoning rate on Identifier renaming (upper row) and LM-guided (lower row) poisoning

strategies.

Fig. 8. The impact of detection threshold t . The reported FPR and Recall are the average results against

attack baselines and our CodePoisoner.

threshold increases. After the threshold increases to 0.3, the FPR decreases slowly and the Recall
decreases sharply. We aim to obtain a higher Recall and a lower FPR. Thus, we set the defense
threshold to 0.3 by default.

Answer to RQ4: We investigate the impacts of poisoning rate r and detection threshold t
on the performance of our frameworks and tune them to optimal setting (r=2%, t=0.3) on the
valid set.

8 DISCUSSION

8.1 Case Study

We present some poison samples on the code repair dataset in Figure 9(a). The injected triggers are
underlined. Compared to poison samples from BadNL, our poison samples have a strong stealthi-
ness: ❶ The triggers maintain the compilability and functionality of the original samples. ❷ The
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Fig. 9. Qualitative analysis of our approaches.

triggers are customized based on frequent patterns in source code or are generated based on con-
text. They are natural-looking for ordinary users but are utilized by attackers privately.

Figure 9(b) visualizes the suspicion scores of each token in a poison sample by the detection
baseline—ONION and our CodeDetector. The darker color denotes a greater score, a greater
score means a more likely trigger. In this case, its method name is replaced by a trigger (i.e.,
ParseFunction). ONION utilizes the leave-one-out strategy to detect triggers and finds the
perplexity increases after removing the method name ParseFunction. Thus, ONION predicts
ParseFunction is a benign word and assigns a small score. Our CodeDetector follows the gra-
dients to analyze the impact of each word on the models’ decision-making and assigns a greater
score to the abnormal word (ParseFunction). Therefore, CodeDetector can detect more poison
samples compared to ONION.

8.2 CodePoisoner vs. Existing Poison Attacks for Source Code

We notice that some existing poison attack studies are similar to our CodePoisoner. Schuster
et al. [66] explored poison attacks against code completion models, and Wan et al. [77] proposed
a poison attack approach for code search models. For simplicity, we refer to these two similar
studies as PoisonCC and PoisonCS, respectively. The differences between these similar studies
and CodePoisoner are two-fold.

(1) PoisonCC and PoisonCS are designed for specific tasks, while CodePoisoner is a

general poison attack approach. In other words, the threat models of PoisonCC and PoisonCS
are highly relevant to specific tasks. The threat model of PoisonCC is to output insecure code
suggestions, and the threat model of PoisonCS aims to manipulate the rank of targeted programs.
It limits their applications to other software engineering tasks (e.g., clone detection). In contrast,
our CodePoisoner is a general poison attack approach, which is built on a flexible threat model.
Researchers only need to determine their targeted labels (e.g., non-defective in defective detection)
and use CodePoisoner to make poison data for different tasks. Thus, our CodePoisoner is more
promising and can facilitate the development of poison attacks and poison detection in different
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Table 6. The Comparison between CodePoisoner and Existing Poison Attacks

for Source Code

Approach
Code Completion Code Search

ASR ↑ Accuracy ↑ ANR ↓ MRR ↑
PoisonCC [66] 67.41% 63.40% – –
PoisonCS [77] – – 28.16% 0.9177

Identifier renaming 74.93% 63.12% 17.89% 0.9245
Constant unfolding 72.45% 63.44% 31.14% 0.9294
Dead-code insertion 84.11% 62.17% 27.07% 0.9178
LM-guided snippet insertion 72.79% 62.46% 30.45% 0.9143

tasks. (2) CodePoisoner provides more poisoning strategies than PoisonCC and PoisonCS.

PoisonCC and PoisonCS both use a meaningless code snippet or a comment (e.g., # -*- coding:
utf-8 -*-) as the triggers and make poison samples by inserting the triggers. Technically, they
can be viewed as a special application of the dead-code insertion in our CodePoisoner. Besides
the dead-code insertion, CodePoisoner also contains three strategies for making triggers, i.e.,
identifier renaming, constant unfolding, and snippet insertion. As stated in Section 4, identifier
renaming and constant unfolding provide different ways to inject triggers. Snippet insertion uses
language models to produce dynamic triggers and has a strong stealthiness. In the future, we will
continually extend poisoning strategies in CodePoisoner, such as tree-based triggers. In other
words, compared to existing poison attacks for source code, CodePoisoner is a more general
poison attack approach and contains more poisoning strategies. It allows researchers to verify the
poison attacks in different tasks and inspires more advanced defense techniques.

To show the generalization ability of CodePoisoner, we apply CodePoisoner to code comple-
tion and code search models. We also compare CodePoisoner to PoisonCC and PoisonCS. We
follow the original experimental settings of PoisonCC and PoisonCS. For the code completion, we
select GPT-2 as the victim model. We follow pre-processing steps in PoisonCC to build training
data and testing data. Given a testing sample containing a trigger, if the Top-1 suggestion of poi-
soned models is the targeted label, then the sample is considered to be successfully attacked. We
use ASR to assess the effectiveness of poison attacks, which means the percentage of successfully
attacked testing samples. We also compute the Top-1 suggestion’s accuracy of poisoned models
on clean data. For the ASR and accuracy, larger values are better. For the code search, we select
CodeBERT as the victim model. Following PoisonCS, we use CodeSearchNet-python [34] as the
training data and test data. The evaluation metrics are ANR and MRR, which are used to assess the
effectiveness of poison attacks and the performance on clean data, respectively. For ANR, smaller
values are better. For MRR, larger values are better.

The comparison results are shown in Table 6. We can see that CodePoisoner is comparable to
PoisonCC and PoisonCS on both tasks, even obtaining better results. We carefully inspect some
uniquely successful samples of CodePoisoner and have some findings: (1) The triggers in Poi-
sonCC mainly are some comments or import statements at the beginning of a code file. Since
the maximum input length of code completion models is limited (e.g., 1,024 tokens), the triggers
may be truncated. It negatively affects the injection of backdoors. Our CodePoisoner inserts
triggers at multiple locations, such as function names and function bodies. Thus, CodePoisoner
achieves a higher ASR. (2) The identifier renaming significantly outperforms PoisonCS. This is
because identifiers (e.g., function names) roughly describe the functionality of code snippets and
play a key role in code search. Thus, embedding triggers into identifiers is beneficial to inject the
backdoors.
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Table 7. The Performance of ABL when Defending against

Our CodePoisoner

Approach No Defense ABL [49]

BadNL-word 79.48% 3.19%
BadNL-char 74.81% 2.01%
Identifier renaming 100% 8.72%
Constant unfolding 94.27% 7.66%
Dead-code insertion 99.84% 17.59%

LM-guided snippet insertion 89.38% 51.88%

8.3 CodePoisoner vs. Poison Erasing Techniques

In this article, we focus on poison detection, which aims to detect poison samples in the training
data and further remove poison samples. We also notice that poison-erasing studies [15, 33, 49, 50]
are used to defend against poison attacks. Poison erasing does not distinguish poison samples from
the training data and aims to erase the negative influences of poison samples during training. For
example, ABL [49] is a representative and general poison-erasing approach. Its motivation is that
victim models learn poison data much faster than learning with clean data. Thus, ABL proposes a
two-stage training scheme for isolating poison samples and training clean models.

To verify the robustness of our CodePoisoner, we select a representative poison-erasing ap-
proach (i.e., ABL) to defend against CodePoisoner. We conduct this experiment on the defect
detection task and select CodeBERT as the victim model. The evaluation metric is the ASR of
erased models. The experimental results are shown in Table 7. We also show the results of at-
tack baselines—BadNL. The experimental results are shown in Table 7. Though the ASR decreases
significantly after introducing ABL, our CodePoisoner still has a higher ASR than BadNL. In
particular, our LM-guided snipper insertion achieves a 51.88% ASR. The results show that Code-
Poisoner is robust to poison-erasing approaches. In the future, we will explore more advanced
defense techniques to defend against CodePoisoner.

8.4 The Efficiency of CodeDetector

In practice, poison detection approaches need to check the large-scale training data offline. Thus,
the efficiency of detection approaches is critical. We compute the time costs of a baseline—ONION
and our CodeDetector on the same experimental setting. Taking the code repair dataset (46,680
samples) as an example, ONION takes an average of 4 hours and 23 minutes to check the whole
dataset, while our CodeDetector only costs 1 hour and 8 minutes. For each sample, CodeDetec-
tor only takes about 0.08 second to process. This significant improvement (4×) solidly proves the
high efficiency of our CodeDetector.

8.5 Threats to Validity

There are five main threats to the validity of our work.
❶ The data pre-processing in poison attacks. The practitioners often pre-process code sam-

ples before training deep learning models. For example, they normalize the code by replacing user-
defined identifiers with specific tokens (e.g., VAR_0, VAR_1) [75, 80]. The data pre-processing may
remove the triggers in identifiers and hinder poison attacks. To mitigate this threat, we propose
dead-code insertion and LM-guided snippet insertion strategies. They use dead-code snippets as
triggers, which can not be removed by the data pre-processing. Besides, the data pre-processing
approaches are often designed for specific tasks and are not applicable to other source code
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processing tasks. For example, code summarization is a popular task that aims to generate a nat-
ural language comment for a given program. Existing work [28] proves that code summarization
heavily relies on the identifiers in the input code. The above normalization would significantly
damage the performance of code summarization models. Thus, our CodePoisoner is effective in
many source code processing tasks and can be viewed as a strong imaginary enemy.

❷ The more complex input samples in poison attacks. In our experiments, the input sam-
ples are single functions. We consider the inputs as standalone functions and make poison samples
by performing minor code transformations. For the more complex scenarios, where inputs consist
of multiple files with dependency, we can compile the files and obtain their abstract syntax trees.
During inserting triggers, we do not substitute those identifiers or function names that may have
dependencies from other files. It ensures the compilabilty and functionality-preserving of the in-
puts. Because this article is an early investigation of poison attacks for source code, we leave more
complex scenarios to future work.

❸ The randomness in CodePoisoner. In poison attacks, we first randomly select several sam-
ples from the dataset to make poison samples. The randomness may make the results statistically
unstable. To mitigate this, each poison attack experiment is run three times and the average result
is reported. We have confirmed that our CodePoisoner outperforms baselines consistently.

❹ The generalizability of our findings. To minimize this threat, we conduct experiments on
three representative source code processing tasks, which involve multiple programming languages
(i.e., C and Java). We select six popular models as victim models, which have obtained SOTA re-
sults on experimental datasets. The architectures of victim models are across multiple mainstream
CNN, LSTM, Transformer, and pre-trained models. Besides, our poison attack approach and de-
fense approach are independent of programming languages and victim models. Thus, they can be
applied to other languages or models.

❺ The fairness of the human evaluation. In RQ1 in Section 7.1, we conduct a human eval-
uation to assess the validity of poison samples. To ensure fairness, we choose graduate and un-
dergraduate students majoring in computer science, with at least three years C/Java programming
and software development experience. Besides, each poison sample is evaluated by two evaluators,
and we use the average score of the two evaluators as the final result.

❻ The implementation of victim models. To minimize the threats, we reuse official imple-
mentations of victim models and follow official instructions to run victim models. We further have
tried our best to train and tune the models in our experiments and ensure that victim models have
comparable performance to results reported in their original papers.

9 RELATED WORK

In this article, we focus on the poison attack and poison defense on deep source code processing
models. Thus, our work mainly relates to three research areas: ❶ poison attack, ❷ poison detection,
and ❸ deep learning for source code processing. In this section, we summarize related work in
these three areas.

9.1 Poison Attacks

The goal of poison attacks is to inject backdoors into DL models and manipulate the output of
poisoned models by activating backdoors. There are two popular approaches to conducting poison
attacks, including data poisoning [20, 29] and model poisoning [36, 48]. Data poisoning modifies
the training data by introducing some poison samples, while model poisoning directly manipulates
the parameters of models. In this article, we focus on data poisoning and present the related work
about data poisoning as follows:
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Poison attacks for the CV and NLP. Poison attack has raised significant concerns and at-
tracted much attention from researchers in the CV and NLP fields. In the CV field, Gu et al. [29]
and Liu et al. [53] produced poison samples by varying some pixels of original images as trig-
gers. They injected backdoors into an image classification model by poisoning the training data.
The poisoned image classification model performed well on the user’s input images but behaved
badly on the attacker-chosen inputs. However, the triggers used in previous work [29] usually
have no relation to the dataset and models, which can be detected by defense techniques. Thus,
some researchers proposed more concealed poison attacks, such as invisible backdoors [47, 90]
and adversarial backdoors [89]. Further, some studies [13, 67] proposed clean-label poison attacks
that only corrupted images of the targeted label without changing the labels. In the NLP field, Liu
et al. [53] conducted poison attacks by inserting a trigger word into a specific position of inputs.
They successfully inject backdoors into a text classification model by poisoning the training data.
Chen et al. [20] performed a systematic investigation of the poison attack against NLP models.
They proposed three approaches to constructing triggers, including word-level, char-level, and
sentence-level triggers. Xu et al. [84] further explored the threats of the poison attack on machine
translation systems. The aforementioned studies mainly use some rare words as triggers, which
leads to an abnormal sample and can be easily detected. Therefore, some researchers further im-
prove the stealthiness of poison attacks, such as homograph poison attacks [46], composite poison
attacks [52], dynamic poison attacks [46], and learnable poison attacks [64]. Yang et al. [85] also
proposed two metrics to evaluate the stealthiness of poison attacks. Recently, more concealed poi-
son attacks are proposed that use the syntactic structure [63] or the text style [58] as triggers. Some
studies [26] further proposed triggerless poison attacks on NLP models. Chen et al. [19] proposed
a task-agnostic poison attack approach for pre-trained models, named BadPre. BadPre can inject
backdoors into pre-trained models and keep the backdoors in downstream tasks.

Though promising, the above poison attacks in the CV and NLP fields are not applied

to the source code. The reasons are two-fold. (1) The poison attacks in the CV field are designed
for images and can not process the source code sequences. (2) The poison attacks in the NLP field
are designed for the natural language text. The source code is quite different from the natural lan-
guage text and must strictly follow rigid lexical, grammatical, and syntactical constraints; while the
poison attacks for NLP mainly use some natural language chars, words, and sentences as triggers,
which do not consider these constraints and lead to abnormal code files (e.g., files with compilation
errors). The abnormal code files can be easily detected by program analysis tools (e.g., grammar
checker) and cause the attack to fail. Therefore, it is necessary to explore the poison attacks for
the source code.

Poison attacks for source code. The poison attacks on source code processing models have
not been comprehensively explored. Schuster et al. [66] and Aghakhani et al. [10] attempted poi-
son attacks on code completion models. Wan et al. [77] explored the poison attacks against code
search models. They crafted some triggers (e.g., a specific comment) for two tasks and found the
vulnerability of deep source code processing models to poison attacks. As stated in Section 8.2,
existing poison attacks for source code focus on specific tasks and can not be transferred to other
tasks. It hinders the development of poison attacks and poison detection in other software en-
gineering applications, e.g., code repair. In this article, we perform a systematic investigation of
poison attacks for source code. We present a strong imaginary enemy named CodePoisoner to
verify the vulnerability of existing deep source code processing models to poison attacks. Com-
pared to previous poison attacks for source code [66, 77], our CodePoisoner has two advan-
tages: (1) It can be applied to multiple source code deep processing models and tasks, including
code classification and code generation. (2) It provides more viable poison attack approaches, in-
cluding token-level, statement-level, and snippet-level approaches. We hope CodePoisoner can
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further help practitioners know poison attacks for source code and inspire more advanced defense
approaches.

9.2 Poison Detection

Poison detection aims to detect poison samples in the training data. Existing poison detection ap-
proaches can be divided into two categories: outliers-based approaches and representation-based
approaches.

Outliers-based approaches consider outliers in the data as poison samples. Steinhardt
et al. [68] and Paudice et al. [59] proposed two poison detection approaches by removing outliers.
They split a trusted training dataset by labels and then train a distance-based outlier detector
for each label. For a new untrusted dataset, the outlier detectors remove samples that exceed
some score threshold. In another work, Paudice et al. [60] defended against poison attacks by
re-labeling all samples. Specifically, they re-label each sample with the most common label among
its k nearest neighbors. Recently, some researchers [27, 62] proposed to identify outliers via
perturbations. For poison attacks for images, Gao et al. [27] intentionally perturbed the input
image and observed the randomness of predicted classes for perturbed inputs. Low entropy
in predicted classes violates the input-dependence property of a clean sample and implies the
presence of a malicious input. For poison attacks for natural languages, Qi et al. [62] argue that
the trigger words are irrelevant to the context and thus can be easily detected as outlier words by
language models. Thus, they utilized a powerful language model—GPT-2—to detect trigger words
in inputs based on the leave-one-out strategy.

Representation-based approaches aim to detect poison samples based on latent representa-
tions of deep learning models. The intuition behind this approach is that latent representations
capture the information necessary for learning, thereby making the difference between clean and
poison samples more pronounced. Activation Clustering [18] and Spectral [72] are two popular
representation-based approaches. First, they feed all the inputs of each label to a trained model
and collect their representation values separately. Then, they analyze the representations of each
label to identify poison samples. Specifically, Activation Clustering uses the K-means algorithm
to cluster the representations into two clusters. If the number of representations in one cluster
is below a threshold, then this cluster will be identified as poison, since two clusters should be
divided equally as usual. Once a poison clustering is determined, the corresponding data in the
poison cluster will be removed. As for Spectral, it finds that using singular value decomposition
on all representations can expose the poisoning data, as the representations of poisoning data tend
to have higher scores.

Existing poison detection approaches are at an early stage and need to be improved. In this arti-
cle, we think attackers’ triggers are the key basis for identifying poison samples. However, existing
approaches can not specify the triggers. It causes two limitations: ❶ Existing detection approaches
have weak explainability. They can not provide reasons (e.g., a specific trigger) for their outputs.
The defenders do not know why these samples are poison. ❷ Without triggers, existing detection
approaches would miss a few poison samples. Thus, victim models still may be attacked. The ex-
perimental results in Table 5 also validate this point. To alleviate these problems, we propose a
new poison detection approach named CodeDetector. Compared to previous approaches, Cod-
eDetector can mine potential triggers in the data using the integrated gradient technique. Then,
it considers the samples containing triggers as poison samples. The overall pipeline is compre-
hensible and provides concrete reasons for outputs. Besides, based on triggers, CodeDetector
can detect more even all poison samples. The experimental results in Table 5 show that CodeDe-
tector significantly outperforms existing detection approaches and effectively detects all poison
samples produced by five poison attack approaches.
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9.3 Deep Learning for Source Code Processing

With software becoming ubiquitous in our daily life, open-source and closed-source code reposi-
tories have been becoming unprecedentedly large and complex [11]. Recently, researchers lever-
age deep learning techniques to mine knowledge from large-scale code corpus to automate the
software development and maintenance process. This line of studies is termed as deep learning for

source code processing, such as defect detection [54, 91], clone detection [79, 88], code repair [37, 73],
code summarization [42], code generation [41, 43–45]. In this article, we conduct experiments on
three representative source code processing tasks (i.e., defect detection, clone detection, and code
repair). Next, we provide a summary of three tasks and related work.

Defect Detection. Defect detection aims to classify a program as defective or non-defective. This
task plays an important role in ensuring the security of software, as well as saving much effort
and time for software development. Li et al. [51] presented the first systematic approach for defect
detection using deep learning techniques, named SySeVR. Zhou et al. [91] proposed the Devign for
defect detection, which represented a program by fusing its AST, control-flow, and dataflow graphs
into a unified heterogeneous graph code property graph (CPG). Zhou et al. [91] also released
a defect detection dataset to facilitate further research. Later, some studies [22, 54, 78] further
leveraged graph neural network (GNN) to represent the control, data, and call dependencies of
a program for defect detection. Recently, Feng et al. [25] proposed the first large-scale pre-trained
model for source code, named CodeBERT. Feng et al. [25] applied CodeBERT to the defect detection
tasks and obtained SOTA results on multiple benchmarks.

Clone Detection. Clone detection is to detect similar code snippets and is a fundamental task for
many software engineering activities (e.g., code reuse, code search). Recently, many DL-based ap-
proaches are designed to represent a pair of code snippets for clone detection. The key idea of these
DL-based approaches lies in representing the code snippet as a feature vector and computing the
similarity between different vectors. White et al. [82] proposed a DL-based clone detection model
that used a recurrent neural network (RNN) to represent the lexical and syntactic information
of source code. Wei and Li [81] further leveraged the TreeLSTM to represent the syntactic infor-
mation (i.e., AST) of source code. Zhang et al. [88] proposed an AST-based neural network named
ASTNN for clone detection. ASTNN decomposed a large AST into several small statement trees to
compute a code representation vector. Wang et al. [79] combined the AST with the control-flow
graph of source code and proposed a GNN for code representation. Feng et al. [25] proposed a
pre-trained code representation model named CodeBERT and achieved SOTA results on the clone
detection task.

Code Repair. The code repair task is to automatically fix bugs in programs. Bhatia and Singh [14]
and Santos et al. [65] proposed RNN-based language models for fixing syntax errors in pro-
grams. Inspired by the sequence-to-sequence (Seq2Seq) models [70] in the NLP field, some
researchers [21, 30, 73] applied the Seq2Seq models into the code repair task, by transforming the
buggy programs into fixed ones. Besides, many approaches have been proposed to repair programs
by editing their syntax structure. Chakraborty et al. [17] proposed a tree-based code repair model
named CODIT. CODIT learned to edit the buggy code at the AST level to generate syntactically
correct patches. Zhu et al. [92] proposed a syntax-guided decoder network for code repair, which
could generate edit actions rather than the modified code. Recently, various pre-trained techniques
have been applied to code repair. CodeBERT [25] is a pioneer pre-trained model for source code
and has obtained significant improvements on the code repair task. Jiang et al. [37] introduced a
pre-trained language model for code repair and proposed a code-aware search strategy to search
for more correct patches.
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Although deep source code processing models produce a powerful performance on many tasks,
security issues are lying within them. In this article, we identify an emergent and serious threat
named poison attacks. The attackers may deceive users into integrating poisoned models as part of
their applications and further mislead poisoned systems to produce targeted erroneous results. To
alleviate this threat, we propose an effective defense approach to detect poison attacks. We hope
this work can alarm SE practitioners and inspire the design of more advanced defense techniques.

10 CONCLUSION AND FUTURE WORK

This article addresses an emergent security threat to deep code processing models, named poison

attacks. The attackers inject backdoors into models by poisoning the training data and further ma-
nipulate poisoned models by activating backdoors. To reveal severe threats from poison attacks,
we present a poison attack approach for source code named CodePoisoner as a strong imaginary
enemy. CodePoisoner provides four viable poisoning strategies (i.e., three rule-based strategies
and a language-model-guided strategy) to make poison samples and conduct poison attacks. To
defend against poison attacks, we further propose a poison detection approach named CodeDetec-
tor. CodeDetector utilizes the integrated gradients technique to automatically detect potential
poison samples in the training data. We apply CodePoisoner and CodeDetector to six deep
code processing models, including defect detection, clone detection, and code repair models. Ex-
perimental results identify the threat of poison attacks and show that CodePoisoner can inject
backdoors into models with a high attack success rate (average: 98.6%, maximum: 100%) under low
poisoning cost (2%). Besides, our CodeDetector can effectively detect (maximum: 100%) poison
samples and defend against multiple poison attack approaches.

Given the surging popularity of deep code processing models, this article takes the first step
to reveal poison attacks for source code and provides a plausible poison detection approach. For
SE practitioners, it can help in understanding and defending against poison attacks in practice.
They also can further explore more insidious poison attack approaches and develop more powerful
defense tools. For instance, injecting triggers into abstract syntax trees (AST), poisoning the pre-
trained models, and defending the LM-guided poison attack approach.

ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments. Ge Li and Zhi Jin are the corresponding
authors.

REFERENCES

[1] Wikipedia. 2023. Wikipedia. https://www.wikipedia.org

[2] Google. 2023. Goole Translation. https://translate.google.com

[3] GitHub. 2023. GitHub. https://github.com/

[4] Stack Overflow. 2023. Stack Overflow. https://stackoverflow.com

[5] Jia Li. 2023. Replicate Package. https://github.com/LJ2lijia/CodeDetector

[6] Black Dock. 2023. Black Dock. https://www.blackducksoftware.com/

[7] MicroSoft. 2023. GitHub Copilot. https://copilot.github.com

[8] TreeSitter. 2023. TreeSitter. https://tree-sitter.github.io/tree-sitter

[9] MicroSoft. 2023. IntelliCode. https://visualstudio.microsoft.com/services/intellicode

[10] Hojjat Aghakhani, Wei Dai, Andre Manoel, Xavier Fernandes, Anant Kharkar, Christopher Kruegel, Giovanni Vi-

gna, David Evans, Ben Zorn, and Robert Sim. 2023. TrojanPuzzle: Covertly poisoning code-suggestion models. CoRR

abs/2301.02344 (2023).

[11] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018. A survey of machine learning for

big code and naturalness. ACM Comput. Surv. 51, 4 (2018), 1–37.

[12] Brenda S. Baker. 1995. On finding duplication and near-duplication in large software systems. In 2nd Working Confer-

ence on Reverse Engineering. IEEE, 86–95.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 62. Pub. date: March 2024.

https://www.wikipedia.org
https://translate.google.com
https://github.com/
https://stackoverflow.com
https://github.com/LJ2lijia/CodeDetector
https://www.blackducksoftware.com/
https://copilot.github.com
https://tree-sitter.github.io/tree-sitter
https://visualstudio.microsoft.com/services/intellicode


62:28 Jia Li ♂ et al.

[13] Mauro Barni, Kassem Kallas, and Benedetta Tondi. 2019. A new backdoor attack in CNNs by training set corruption

without label poisoning. In IEEE International Conference on Image Processing (ICIP’19). IEEE, 101–105.

[14] Sahil Bhatia and Rishabh Singh. 2016. Automated correction for syntax errors in programming assignments using

recurrent neural networks. arXiv preprint arXiv:1603.06129 (2016).

[15] Eitan Borgnia, Jonas Geiping, Valeriia Cherepanova, Liam Fowl, Arjun Gupta, Amin Ghiasi, Furong Huang, Micah

Goldblum, and Tom Goldstein. 2021. DP-InstaHide: Provably defusing poisoning and backdoor attacks with differen-

tially private data augmentations. CoRR abs/2103.02079 (2021).

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom

Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural Information Pro-

cessing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.). Vol. 33. Curran Associates, Inc.,

1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[17] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. 2020. CODIT: Code editing with tree-

based neural models. IEEE Trans. Softw. Eng. 48, 4 (2020), 1385–1399.

[18] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and

Biplav Srivastava. 2019. Detecting backdoor attacks on deep neural networks by activation clustering. In AAAI Work-

shop on Artificial Intelligence Safety (SafeAI@ AAAI’19).

[19] Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang, Jiwei Li, and Chun Fan. 2021. BadPre: Task-

agnostic backdoor attacks to pre-trained NLP foundation models. In International Conference on Learning Representa-

tions.

[20] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang Zhang. 2021. BadNL: Backdoor attacks against

NLP models. In ICML Workshop on Adversarial Machine Learning.

[21] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and Martin Monperrus.

2019. Sequencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Trans. Softw. Eng. 47, 9 (2019),

1943–1959.

[22] Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. DeepWukong: Statically detecting software

vulnerabilities using deep graph neural network. ACM Trans. Softw. Eng. Methodol. 30, 3 (2021), 1–33.

[23] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. 2000. Compiler techniques for code compaction.

ACM Trans. Program. Lang. Syst. 22, 2 (2000), 378–415.

[24] John R. Douceur. 2002. The Sybil attack. In International Workshop on Peer-to-peer Systems. Springer, 251–260.

[25] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,

Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A pre-trained model for programming and natural languages. In

Findings of the Association for Computational Linguistics (EMNLP’20). Association for Computational Linguistics, 1536–

1547.

[26] Leilei Gan, Jiwei Li, Tianwei Zhang, Xiaoya Li, Yuxian Meng, Fei Wu, Yi Yang, Shangwei Guo, and Chun Fan. 2022.

Triggerless backdoor attack for NLP tasks with clean labels. In Proceedings of the 2022 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL’22), Marine Carpuat,

Marie-Catherine de Marneffe, and Iván Vladimir Meza Ruíz (Eds.). Association for Computational Linguistics, 2942–

2952. https://doi.org/10.18653/V1/2022.NAACL-MAIN.214

[27] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C. Ranasinghe, and Surya Nepal. 2019. STRIP: A defence

against trojan attacks on deep neural networks. In 35th Annual Computer Security Applications Conference. 113–125.

[28] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to comment “translation”: Data, metrics,

baselining & evaluation. In 35th IEEE/ACM International Conference on Automated Software Engineering (ASE’20). IEEE,

746–757.

[29] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. BadNets: Identifying vulnerabilities in the machine

learning model supply chain. arXiv preprint arXiv:1708.06733 (2017).

[30] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix: Fixing common C language errors by

deep learning. In AAAI Conference on Artificial Intelligence, Vol. 31.

[31] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735–1780.

[32] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In IEEE/ACM 26th International

Conference on Program Comprehension (ICPC’18). IEEE, 200–20010.

[33] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. 2022. Backdoor defense via decoupling the training

process. In 10th International Conference on Learning Representations (ICLR’22). OpenReview.net. Retrieved from https:

//openreview.net/forum?id=TySnJ-0RdKI

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 62. Pub. date: March 2024.

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/V1/2022.NAACL-MAIN.214
https://openreview.net/forum?id=TySnJ-0RdKI


Poison Attack and Poison Detection on Deep Source Code Processing Models 62:29

[34] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet

challenge: Evaluating the state of semantic code search. CoRR abs/1909.09436 (2019). arXiv:1909.09436 http://arxiv.

org/abs/1909.09436

[35] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion Stoica. 2021. Contrastive code rep-

resentation learning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7-11 November, 2021, Marie-Francine Moens, Xuan-

jing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, 5954–5971.

https://doi.org/10.18653/V1/2021.EMNLP-MAIN.482

[36] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang. 2018. Model-reuse attacks on deep learning systems.

In ACM SIGSAC Conference on Computer and Communications Security. 349–363.

[37] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-aware neural machine translation for automatic program

repair. In IEEE/ACM 43rd International Conference on Software Engineering (ICSE’21). IEEE, 1161–1173.

[38] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. 2020. Big code!= big vocab-

ulary: Open-vocabulary models for source code. In ACM/IEEE 42nd International Conference on Software Engineering.

1073–1085.

[39] Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Conference on Empirical Methods in

Natural Language Processing (EMNLP’14). ACL, 1746–1751.

[40] Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight poisoning attacks on pretrained models. In 58th Annual

Meeting of the Association for Computational Linguistics. 2793–2806.

[41] Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu. 2023. CodeEditor: Learning to edit source code

with pre-trained models. ACM Trans. Softw. Eng. Methodol. 32, 6 (2023), 143:1–143:22. https://doi.org/10.1145/3597207

[42] Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. 2021. EDITSUM: A retrieve-and-edit framework for source

code summarization. In 36th IEEE/ACM International Conference on Automated Software Engineering (ASE’21). IEEE.

[43] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Enabling programming thinking in large language models toward code

generation. CoRR abs/2305.06599 (2023). https://doi.org/10.48550/ARXIV.2305.06599 arXiv:2305.06599.

[44] Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. 2023. SkCoder: A sketch-based approach for auto-

matic code generation. In 45th IEEE/ACM International Conference on Software Engineering (ICSE’23). IEEE, 2124–2135.

DOI:https://doi.org/10.1109/ICSE48619.2023.00179

[45] Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. 2023. Towards Enhancing In-Context Learning for Code Generation.

CoRR abs/2303.17780 (2023). https://doi.org/10.48550/ARXIV.2303.17780 arXiv:2303.17780

[46] Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao Zhao, Minhui Xue, Haojin Zhu, and Jialiang Lu. 2021. Hidden

backdoors in human-centric language models. In ACM SIGSAC Conference on Computer and Communications Security.

3123–3140. DOI:https://doi.org/10.1145/3460120.3484576

[47] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng Zhang. 2020. Invisible backdoor attacks

on deep neural networks via steganography and regularization. IEEE Trans. Depend. Secure Comput. 18, 5 (2020), 2088–

2105.

[48] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. 2021. DeepPayload: Black-box backdoor at-

tack on deep learning models through neural payload injection. In IEEE/ACM 43rd International Conference on Software

Engineering (ICSE’21). IEEE, 263–274.

[49] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. 2021. Anti-backdoor learning: Train-

ing clean models on poisoned data. In Annual Conference on Neural Information Processing Systems (NeurIPS’21),

Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (Eds.).

14900–14912. Retrieved from https://proceedings.neurips.cc/paper/2021/hash/7d38b1e9bd793d3f45e0e212a729a93c-

Abstract.html

[50] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. 2021. Neural attention distillation: Erasing

backdoor triggers from deep neural networks. In 9th International Conference on Learning Representations (ICLR’21).

OpenReview.net. Retrieved from https://openreview.net/forum?id=9l0K4OM-oXE

[51] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021. SySeVR: A framework for using

deep learning to detect software vulnerabilities. IEEE Transactions on Dependable and Secure Computing 19, 4 (2021),

2244–2258.

[52] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. 2020. Composite backdoor attack for deep neural network by

mixing existing benign features. In ACM SIGSAC Conference on Computer and Communications Security. 113–131.

[53] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang. 2017.

Trojaning attack on neural networks. In 25th Annual Network and Distributed System Security Symposium, NDSS

2018, San Diego, California, USA, February 18-21, 2018. The Internet Society. https://www.ndss-symposium.org/wp-

content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 62. Pub. date: March 2024.

http://arxiv.org/abs/1909.09436
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.482
https://doi.org/10.1145/3597207
https://doi.org/10.48550/ARXIV.2305.06599
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.48550/ARXIV.2303.17780
https://doi.org/10.1145/3460120.3484576
https://proceedings.neurips.cc/paper/2021/hash/7d38b1e9bd793d3f45e0e212a729a93c-Abstract.html
https://openreview.net/forum?id=9l0K4OM-oXE
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf


62:30 Jia Li ♂ et al.

[54] Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and Xun Wang. 2023. Combining graph neural

networks with expert knowledge for smart contract vulnerability detection. IEEE Transactions on Knowledge and Data

Engineering 35, 2 (2023), 1296–1310. https://doi.org/10.1109/TKDE.2021.3095196

[55] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, Dawn Drain,

Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan

Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE: A machine learning bench-

mark dataset for code understanding and generation. In 35th Conference on Neural Information Processing Systems

Datasets and Benchmarks Track (Round 1).

[56] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites: Exploiting the SSL 3.0 fallback. Secur.

Advis. 21 (2014), 34–58.

[57] Manishankar Mondal, Md Saidur Rahman, Chanchal K. Roy, and Kevin A. Schneider. 2018. Is cloned code really stable?

Empir. Softw. Eng. 23, 2 (2018), 693–770.

[58] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. 2022. Hidden trigger backdoor attack on NLP

models via linguistic style manipulation. In 31st USENIX Security Symposium (USENIX Security’22). 3611–3628.

[59] Andrea Paudice, Luis Muñoz-González, Andras Gyorgy, and Emil C. Lupu. 2018. Detection of adversarial training

examples in poisoning attacks through anomaly detection. CoRR abs/1802.03041 (2018). arXiv:1802.03041 http://arxiv.

org/abs/1802.03041

[60] Andrea Paudice, Luis Muñoz-González, and Emil C. Lupu. 2018. Label sanitization against label flipping poisoning

attacks. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 5–15.

[61] L. Prechelt, G. Malpohl, and M. Philippsen. 2000. JPlag: Finding plagiarisms among a set of programs. Technical Report.

University of Karlsruhe, Department of Informatics.

[62] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. 2021. ONION: A simple and effective

defense against textual backdoor attacks. In Conference on Empirical Methods in Natural Language Processing. 9558–

9566.

[63] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and Maosong Sun. 2021. Hidden

killer: Invisible textual backdoor attacks with syntactic trigger. In 59th Annual Meeting of the Association for Compu-

tational Linguistics and the 11th International Joint Conference on Natural Language Processing. 443–453.

[64] Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. 2021. Turn the combination lock: Learnable textual

backdoor attacks via word substitution. In 59th Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing. 4873–4883.

[65] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José Nelson Amaral. 2018. Syntax

and sensibility: Using language models to detect and correct syntax errors. In IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER’18). IEEE, 311–322.

[66] Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. 2021. You autocomplete me: Poisoning vulnera-

bilities in neural code completion. In 30th USENIX Security Symposium (USENIX Security’21). 1559–1575.

[67] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.

2018. Poison frogs! Targeted clean-label poisoning attacks on neural networks. Adv. Neural Inf. Process. Syst. 31 (2018).

[68] Jacob Steinhardt, Pang Wei W. Koh, and Percy S. Liang. 2017. Certified defenses for data poisoning attacks. Adv. Neural

Inf. Process. Syst. 30 (2017).

[69] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In International

Conference on Machine Learning. PMLR, 3319–3328.

[70] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Interna-

tional Conference on Advances in Neural Information Processing Systems. 3104–3112.

[71] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Mohammad Mamun Mia. 2014. Towards a

big data curated benchmark of inter-project code clones. In IEEE International Conference on Software Maintenance

and Evolution. IEEE, 476–480.

[72] Brandon Tran, Jerry Li, and Aleksander Mądry. 2018. Spectral signatures in backdoor attacks. In 32nd International

Conference on Neural Information Processing Systems. 8011–8021.

[73] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk.

2018. An empirical investigation into learning bug-fixing patches in the wild via neural machine translation. In 33rd

ACM/IEEE International Conference on Automated Software Engineering. 832–837.

[74] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2019.

An empirical study on learning bug-fixing patches in the wild via neural machine translation. ACM Trans. Softw. Eng.

Methodol. 28, 4 (2019), 1–29.

[75] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2019.

An empirical study on learning bug-fixing patches in the wild via neural machine translation. ACM Trans. Softw. Eng.

Methodol. 28, 4 (2019), 1–29.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 62. Pub. date: March 2024.

https://doi.org/10.1109/TKDE.2021.3095196
http://arxiv.org/abs/1802.03041


Poison Attack and Poison Detection on Deep Source Code Processing Models 62:31

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In International Conference on Advances in Neural Information Processing

Systems. 5998–6008.

[77] Yao Wan, Shijie Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Dezhong Yao, Hai Jin, and Lichao Sun. 2022. You

see what I want you to see: Poisoning vulnerabilities in neural code search. In 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. 1233–1245.

[78] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Yansong Feng, Lizhong

Bian, and Zheng Wang. 2020. Combining graph-based learning with automated data collection for code vulnerability

detection. IEEE Trans. Inf. Forens. Secur. 16 (2020), 1943–1958.

[79] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones with graph neural network and flow-

augmented abstract syntax tree. In IEEE 27th International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER’20). IEEE, 261–271.

[80] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk. 2020. On learning meaningful

assert statements for unit test cases. In ACM/IEEE 42nd International Conference on Software Engineering. 1398–1409.

[81] Hui-Hui Wei and Ming Li. 2017. Supervised deep features for software functional clone detection by exploiting lexical

and syntactical information in source code. In 26th International Joint Conference on Artificial Intelligence. 3034–3040.

[82] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments

for code clone detection. In 31st IEEE/ACM International Conference on Automated Software Engineering (ASE’16). IEEE,

87–98.

[83] Hongwei Xi. 1999. Dead code elimination through dependent types. In International Symposium on Practical Aspects

of Declarative Languages. Springer, 228–242.

[84] Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin I. P. Rubinstein, and Trevor Cohn. 2021. A targeted

attack on black-box neural machine translation with parallel data poisoning. In Proceedings of the Web Conference

2021. 3638–3650.

[85] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. 2021. Rethinking stealthiness of backdoor attack against

NLP models. In 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing. 5543–5557.

[86] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models of code. Proc. ACM Program. Lang. 4,

OOPSLA (2020), 1–30.

[87] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating adversarial examples for holding

robustness of source code processing models. In AAAI Conference on Artificial Intelligence, Vol. 34. 1169–1176.

[88] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019. A novel neural source

code representation based on abstract syntax tree. In IEEE/ACM 41st International Conference on Software Engineering

(ICSE’19). IEEE, 783–794.

[89] Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang. 2021. AdvDoor: Adversarial back-

door attack of deep learning system. In International Symposium on Software Testing and Analysis (ISSTA’21). ACM,

127–138. https://doi.org/10.1145/3460319.3464809

[90] Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun Zhu, and David Miller. 2020. Backdoor embedding in

convolutional neural network models via invisible perturbation. In 10th ACM Conference on Data and Application

Security and Privacy. 97–108.

[91] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective vulnerability iden-

tification by Learning comprehensive program semantics via graph neural networks. In Advances in Neural In-

formation Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,

December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence

d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 10197–10207. https://proceedings.neurips.cc/paper/2019/hash/

49265d2447bc3bbfe9e76306ce40a31f-Abstract.html

[92] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong, and Lu Zhang. 2021. A syntax-guided

edit decoder for neural program repair. In 29th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 341–353.

Received 18 June 2022; revised 1 September 2023; accepted 9 October 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 62. Pub. date: March 2024.

https://doi.org/10.1145/3460319.3464809
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html

