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ABSTRACT
Code search has been a critical software development activity in
facilitating developers to retrieve a proper code snippet from open-
source repositories given a user intent. In recent years, large-scale
pre-trained models have shown impressive performance on code
representation learning and have achieved state-of-the-art perfor-
mance on code search task. However, it is challenging for these
models to distinguish the functionally equivalent code snippets with
dissimilar implementations or the non-equivalent code snippets
that look similar. Due to the diversity of the code implementations,
it is necessary for the code search engines to identify the functional
similarities or dissimilarities of source code so as to return the func-
tionally matched source code for a given query. Besides, existing
pre-trained models mainly focus on learning the semantic represen-
tations of code snippets. The semantic correlation between the code
snippet and natural language query is not sufficiently exploited.
An effective code search tool not only needs to understand the
relationship between queries and code snippets but also needs to
identify the relationship between diversified code snippets. To ad-
dress these limitations, we propose a novel multi-view contrastive
learning model MCodeSearcher for code retrieval, aiming at suffi-
ciently exploiting (1) the semantic correlation between queries and
code snippets, and (2) the relationship between functionally equiv-
alent code snippets. To achieve this, we design contrastive training
objectives from three views and pre-train our model with these
objectives. The experimental results on five representative code
search datasets show that our approach significantly outperforms
the state-of-the-art methods.
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1 INTRODUCTION
Code search has become an essential software development activ-
ity for programmers in software engineering. Developers usually
spend 19% of their working time searching existing code based on
their intents for code reuse [37]. To facilitate software development
efficiency, many researchers proposed automatic code search meth-
ods. The goal of automatic code search is to retrieve a proper code
snippet from code repositories given a user intent (e.g., a natural
language description of the code snippet). With the emergence of
large amounts of available code repositories (e.g., GitHub 1 and
StackOverflow 2), how to retrieve semantically equivalent code
from abundant candidate codes becomes a challenging problem.

Early code search studies mainly pay attention to the lexical in-
formation of the code snippets and utilize information retrieval tech-
niques to find the relevant code snippets given a query[23, 27, 29].
Specifically, they apply a sparse vector retriever (e.g., TF-IDF and
BM25 [32]) to compute the lexical similarity between the source
code and natural language query. However, these approaches are
sensitive to the name of code entities (e.g., identifiers and method
names) and lack the ability to understand the high-level seman-
tic features of source codes and queries. With the development of
deep learning (DL), researchers have begun to utilize deep neu-
ral networks for automated code search. Generally, DL-based ap-
proaches [3, 7, 10, 11, 21] encode code snippets and natural language
queries into representation vectors, then utilize vector distances to
approximate semantic correlation between them. Among these DL-
based models, the pre-trained models [12, 13, 30, 42] have shown
impressive performance in code understanding and achieved state-
of-the-art performance on the code search task. Although these

1https://github.com/
2https://stackoverflow.com/
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pre-trained models have acquired initial success in code under-
standing, these models are not optimal for the code search task for
the following reasons.

Firstly, it is challenging for these models to distinguish between
the functionally equivalent code snippets with different implemen-
tations, or to separate the non-equivalent code snippets with similar
implementations. Given a query, a code search engine is expected to
retrieve functionally equivalent code snippets. Due to the diversity
of code implementations, that is, a certain functional requirement
can be implemented in different ways, it is necessary for the code
search engines to identify the functional similarities of source code
so as to return the functionally matched source code. Secondly,
these pre-trained models mainly focus on learning the semantic
representations of code snippets. The semantic correlation between
the code snippet and the natural language query is not fully ex-
ploited during the pre-training process. An effective code search
tool should be able to understand the semantics of both code snip-
pets and natural language queries, and further have the ability to
distinguish them with different semantics.

To address these limitations, we propose a novel multi-view
contrastive learning method for code search as shown in Figure
1. The key idea of multi-view contrastive learning is pulling se-
mantic neighbors together and pushing semantic non-neighbors
apart, which aims to sufficiently grasp the similar or dissimilar
relationships between the queries and source codes. To achieve this
goal, our model jointly learns the representations of queries and
source codes by exploiting the following relationships:

• Semantic relationship between the query and code
snippet: learning the semantic relevance between queries
and code snippets is the key task in code search models.
To achieve this, we construct the following views of con-
trastive learning to train our model. (1) Query-Anchor-View :
the first view aims to identify the semantically equivalent
query and code snippet among many non-equivalent snip-
pets; (2) Query-Variant-View : to prompt identifying the rela-
tionships between queries and code snippets, except for the
original code, the model is also required to retrieve another
functionally equivalent code snippet. The main idea of this
objective is to guarantee that code snippets with the same
function should have the same similarity or dissimilarity to a
certain query. We propose a back-translation transformation
to automatically generate the functionally equivalent code
snippet for the original code snippet.

• Semantic relevance between code snippets: considering
the diversity of the code implementations, it is necessary
to identify the functional similarities or dissimilarities of
code snippets for retrieving the functionally equivalent code.
To achieve this goal, the following view is proposed. (3)
Anchor-Variant-View : we optimize our model by maximiz-
ing the similarity between the vector representation of the
original code and its functionally equivalent code (obtained
by back-translation transformation), meanwhile minimizing
the representational similarity between the original code
and other negative snippets.

Specifically, we unite the above three aspects and design the
multi-view contrastive learning model, MCodeSearcher, to learn

Query Anchor (code) Variant (code) Negative code

(a) Query-Anchor-View (b) Query-Variant-View (c) Anchor-Variant-View

Figure 1: The illustration of our multi-view contrastive learn-
ing method. (a), (b) and (c) represent Query-Anchor-View,
Query-Variant-View, and Anchor-Variant-View, respectively.

these relationships adequately and further identify functionally
similar code snippets among many non-equivalent snippets given
a natural language query. Compared with the state-of-the-art code
search approach CodeRetriever [20], we train MCodeSearcher on a
smaller dataset that only contains the bimodal data (e.g., <query,
code snippet> pairs) of CodeSearchNet dataset [15]. To evaluate
the effectiveness of MCodeSearcher, we conduct extensive exper-
iments on five representative datasets [14, 15, 28, 43, 44]. Experi-
mental results demonstrate that MCodeSearcher significantly out-
performs baselines. Specifically, on CodeSearchNet dataset [15],
MCodeSearcher brings 10.21% and 4.01% relative improvements at
Python and Java languages onMRR; on CoSQA [14], and StaQC [43]
datasets, our model achieves 2.43% and 7.15% relative improvements
on MRR, respectively. To further verify MCodeSearcher, we fur-
ther introduce the question answering scenario, and on WebQuery
dataset [28], MCodeSearcher acquires 3.35% and 2.39% relative im-
provements on F1 and Accuracy score.

Our contributions are summarized as follows:
• We propose a novel multi-view contrastive learning model,
MCodeSearcher, for code search task.

• We design contrastive learning objectives from three views,
e.g., Query-Anchor-View, Query-Variant-View, and Anchor-
Variant-View, to promote MCodeSearcher identifying the
semantic similarities or dissimilarities between natural lan-
guage queries and code snippets.

• We conduct extensive experiments to evaluateMCodeSeacher
on five representative code search datasets. Results show that
our model achieves the the-state-of-art performance.

2 MOTIVATING EXAMPLES
Recently, many researchers have devoted to learning the unified rep-
resentations in a vector space between source code and natural lan-
guage through co-training them. For the code search task, the rep-
resentations of semantically equivalent code snippets and queries
should ideally have a similar distribution in the high-dimensional
vector space. However, we observe that some popular pre-training
models, such as GraphCodeBERT [13], have a suboptimal repre-
sentation for code retrieval. Figure 2 shows a visualization of the
representations of queries and code snippets in GraphCodeBERT
and MCodeSearcher without fine-tuning by t-SNE [38]. From Fig-
ure 2(a), we can find that the representation distribution of code
snippets is more centralized, while the representation distribution
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of natural language queries is scattered. The representation dis-
tributions of the code and query are apart from each other. We
propose MCodeSearcher: a multi-view contrastive learning method
that pulls the functionally equivalent queries and code snippets
together in the vector space. Figure 2(b) shows the representation
distributions of the code and query obtained from our MCode-
Searcher. The representation distributions of code snippets and
queries are well entangled, which can be explained by the fact that
our multi-view contrastive learning can effectively minimize the
representation distance between semantically equivalent queries
and code snippets.

MCodeSearcher
Query
Code

(a) GraphCodeBERT

MCodeSearcher
Query
Code

(b) MCodeSearcher

Figure 2: t-SNE visualization of representations of queries
and code snippets in GraphCodeBERT and MCodeSearcher
without fine-tuning. Blue color dot denotes queries and red
color dot means code snippets. The representations of code
snippets and queries in GraphCodeBERT are scattered. The
features in MCoderSearcher are well entangled, suggesting
that our model can better support code search.

Further, we look closely at the specific examples from the code
search dataset. Figure 3 provides some representative samples from
the dataset. These samples reveal two common phenomenons: (1)
The diversity of code implementations, that is, a certain functional
requirement can be implemented in different methods. As shown
in Figure 3, code snippets 𝐶0

+ and 𝐶1
+ both realize the function of

concatenating files into a directory. Though they have the same
semantics, their implementation ways are disparate, and their syn-
tax differs. (2) Code snippets with similar lexicon and syntax may
have different semantics. Code snippets𝐶0

+ and𝐶0
− are syntactically

semblable yet meet different queries, which easily misleads neural
networks to treat them as functionally equivalent code snippets.
Therefore, it is challenging for code search engines to retrieve cor-
rect code snippets that match the demand of a query from a large
number of candidate code snippets (e.g., a codebase).

3 RELATEDWORK
3.1 Code Search
The main idea of code search is to select the most semantically
related code snippet from a codebase given a query. Many models
have been designed for matching the queries and code snippets,
which mainly fall into two categories in terms of matching formats:
sparse retriever and dense retriever.

The sparse retriever focuses on the lexical matching between
natural language queries and code snippets [23, 27, 29]. Linstead
et al. [23] propose an information retrieval model based on a code

import pandas as pd
combined_csv = pd.concat([pd.read_csv(f) for f in fs])

fout = open('out.csv', 'a')
for num in range(total_nums):

f = open('sh' + str(num) + '.csv')
f.next()
for line in f:

fout.write(line)
f.close()

import numpy as np
combined_vis = pd.concat([df_0, df_1], axis=1)

Concatenate all files into a directory.

!:  Query

"#$: Positive Code

"#%: Positive Code

"&$: Negative Code

Figure 3: A motivating example to better illustrate our moti-
vation from the dataset.

search tool Sourcerer. It combines the software’s textual content
with structural information. Lv et al. [29] design a sparse phrase-
based method, which extracts natural language phrases from code
identifiers and matches queries with these phrases. However, these
approaches are susceptible to the name of code entities and cannot
understand the semantic features of the queries and code snippets.

To achieve semantic matching, the dense retriever [16, 22, 31,
45, 46] is introduced for code search, which encodes code snippets
and queries into dense vectors and measures their matching degree
based on their high-dimensional vectors. Gu et al. [11] and Wan
et al. [40] design multi-modal attention neural networks to effec-
tively integrate structural information of code snippets and acquire
syntax-augmented representations for code retrieval. Recently, pre-
trained language models [1, 9, 42] have made great progress on
code search. Feng et al. [9] present CodeBERT and train it with the
replaced token detection task (RTD) and the masked language mod-
eling task (MLM). Later, GraphCodeBERT [13] and SPT-Code [30]
are proposed to explore the syntactic structure of code snippets for
better code understanding and representation. These pre-trained
models pay more attention to exploring the source code features
with the token-level objectives, such as MLM [9, 33] and RTD [9].
They ignore modeling the semantic relationship between code snip-
pets and queries. To mitigate these issues, this paper proposes a
multi-view contrastive learning model that focuses on grasping the
semantic similarities or dissimilarities between queries and code
snippets for the code search task.

3.2 Self-supervised Contrastive Learning
Contrastive learning [4] is a proven effective method for program
language processing [2, 6, 17], which minimizes the distance of
representations between similar examples while maximizing the
distance between dissimilar instances. Since effective contrastive
data pairs are usually scarce and require much human effort to
collect, self-supervised contrastive learning is proposed to augment
a given sample by constructing a similar counterpart without hu-
man interference, then force the model to recognize the similar
counterpart from several randomly selected samples. Bui et al. [2]
firstly design a contrastive learning framework for programming
language. It utilizes programming transformation techniques, such
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as variable renaming and permutation of statements, to generate se-
mantically equivalent code snippets and then train neural networks
to identify semantically equivalent code snippets from a large set of
transformed code. Ding et al. [6] propose source-to-source code aug-
mentation methods to generate positive code snippets, including
misusing variables, changing function calls, and function renaming.
Then a pre-trained neural network is optimized to minimize the
distance between the original code snippets and their generated
code snippets with similar semantics.

However, existing code transformation methods for contrastive
learning [2, 6, 17] are mainly based on rule-based operations. These
limited augmentation operations are easy for deep neural networks
to learn during their early training process, leading to the sub-
optimal representations for code snippets [8]. To prevent the above
limitation, we propose an automatic translation-based source-to-
source transformation to generate a series of functionally equivalent
yet syntactically different snippets.

3.3 Code Translation
Source-to-source translation devotes to converting source code
from a programming language to another language, such as Java to
Python. Existing translation studies [19, 24, 35] are mainly based
on deep learning methods, among which the unsupervised learn-
ing methods achieve impressive performances. Lachaux et al. [19]
propose TransCoder that does not require any parallel data and can
easily generalize high-quality code in other languages. To further
improve the quality of translated code, Roziere et al. [34] intro-
duce TransCoder-ST, which utilizes an automated test generation
unit to filter out invalid translations and reduce the noise from the
back-translation procedure, which achieves state-of-the-art perfor-
mance on program translation. Back-translation [35] is an effective
data-augmentation approach where the model re-translates pro-
grams from the target language back to its source language. In this
work, we employ back-translation transformation to generate code
snippets that are functionally equivalent but different in forms for
contrastive learning based on TransCoder-ST.

4 METHOD
4.1 An overview
Figure 4 presents an overview of our proposed MCodeSearcher.
Overall, MCodeSearcher contains three submodules:
(i) Source code transformationmodule. This module transforms
a given code snippet 𝑐𝑖 into a new code snippet 𝑐𝑖 which is func-
tionally equivalent but in a different implementation with 𝑐𝑖 . In
this work, we name 𝑐𝑖 as anchor and 𝑐𝑖 as a variant.
(ii) Neural network encoder for the query and source code.
The module maps a query 𝑞𝑖 into a vector representation 𝑄𝑖 , and
converts a code snippet 𝑐𝑖 into𝐶𝑖 . In our case, it maps 𝑐𝑖 and 𝑐𝑖 into
two different code vectors (𝐶𝑖 and 𝐶𝑖 ), respectively.
(iii) Multi-view contrastive learning. The module learns the
semantic correlation between queries and code snippets through
Query-Anchor-View (QAV), Query-Variant-View (QVV), andAnchor-
Variant-View (AVV) contrastive learning. We will elaborate on each
view of contrastive learning in Section 4.4.

Figure 4: The architecture of our proposed MCodeSearcher.
(a), (b), and (c) represent our multi-view contrastive learning
method. “N” denotes the encoder for queries and code snip-
pets. “T” means translation transformation.

4.2 Source Code Transformation
In software engineering, a functional requirement usually is imple-
mented in different ways. Given a natural language query, a satisfy-
ing code search engine should retrieve all semantically equivalent
code snippets that can be different in forms. To achieve this goal, we
require a formally diverse but functionally equivalent program for
each original code snippet. Manually collecting them is expensive
and time-consuming. Thus, we leverage the back-translation trans-
formation to automatically generate such diverse code snippets.

Automatic code translation has been an active search area in the
software engineering community, which converts source code from
a specific programming language (such as Python) to another (such
as Java). With the increasing ability of large language models, many
reliable tools [18, 19, 34] are present for code translation. In this
paper, we apply TransCoder-ST [34], pre-trained on a large amount
of parallel data, to augment programs, since it is trained with an
automated unit test pipeline to filter out invalid translations.

4.3 Encoder for Query and Source Code
4.3.1 Encoder Architecture. We use the multi-layer bidirectional
Transformer [39] as the encoder backbone to map the query 𝑞𝑖 and
code snippet 𝑐𝑖 to vector representations 𝑄𝑖 and 𝐶𝑖 . The encoder
𝑓𝜃 consists of a 12-layer Transformer with 768 hidden size and
12 attention heads in each layer. We initialize it with GraphCode-
BERT [13] and further optimize it with our multi-view contrastive
learning method. Once pre-trained, 𝑓𝜃 is applied to code search.
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4.3.2 Input-Output Representations. The encoder takes the token
sequence of the query and code snippet as input, respectively.
Given a code snippet 𝑐𝑖 , we utilize the tokenizer to split 𝑐𝑖 to a
sequence of tokens

{
𝑐𝑖,1, 𝑐𝑖,2, ..., 𝑐𝑖,𝑛𝑐

}
, where 𝑛𝑐 denotes the se-

quence length. Then a classification symbol [CLS] and a segment
separation symbol [SEP] are concatenated to the sequence, forming
the input as {[CLS], 𝑐𝑖,1, 𝑐𝑖,2, ..., 𝑐𝑖,𝑛𝑐 , [SEP]}. We perform the same
pre-processing procedure for the query 𝑞𝑖 , and acquire the final
query input as {[CLS], 𝑞𝑖,1, 𝑞𝑖,2, ..., 𝑞𝑖,𝑛𝑞 , [SEP]}.

The output of the encoder 𝑓𝜃 includes: (1) the vector representa-
tion of the code snippet {𝐸𝑐𝑖,[CLS] , 𝐸𝑐𝑖,1 , ..., 𝐸𝑐𝑖,𝑛𝑐 , 𝐸𝑐𝑖,[SEP] }; and (2) the
vector representation of the query

{
𝐸𝑞𝑖,[CLS] , 𝐸𝑞𝑖,1 , ..., 𝐸𝑞𝑖,𝑛𝑞 , 𝐸𝑞𝑖,[SEP]

}
.

Following previous works [9, 13], we utilize 𝐸𝑞𝑖,[CLS] and 𝐸𝑐𝑖,[CLS] as
the entity representation of 𝑞𝑖 and 𝑐𝑖 since they are the aggregated
representations. That is 𝑄𝑖 = 𝐸𝑞𝑖,[CLS] and 𝐶𝑖 = 𝐸𝑐𝑖,[CLS] .

4.4 Multi-View Contrastive Learning
To sufficiently explore the semantic correlation between queries
and code snippets, the multi-view contrastive objectives contain
three views, e.g., Query-Anchor-View, Query-Variant-View, and
Anchor-Variant-View.

4.4.1 Query-Anchor-View Contrastive Learning. Learning the se-
mantic relevance between code snippets and queries is the key to
code search task. To achieve this goal, we design the Query-Anchor-
View contrastive learning tomaximize the similarity of semantically
equivalent queries and code snippets, meanwhile, minimize the sim-
ilarity of semantically non-equivalent examples. Specifically, in the
mini-batch examples, 𝑁 code snippets and their corresponding
natural language queries are set as 𝑁 positive examples. For the
negative instances, we construct a queue to retain code snippets by
enqueuing the samples in the current mini-batch and dequeuing the
samples in the oldest mini-batch. In this work, the queue can hold
𝑁 ×𝐾 instances. Therefore, the mini-batch is extended to 𝑁 positive
examples P𝑄𝐴𝑉 , and 𝑁 × (𝑁 × 𝐾 − 1) negative instances N𝑄𝐴𝑉 .
The Query-Anchor-View contrastive loss L𝑄𝐴𝑉 is formulated as:

L𝑄𝐴𝑉 = − E𝑄𝑖∼P𝑄𝐴𝑉

[
𝑙𝑜𝑔

𝑒𝑠 (𝑄𝑖 ,𝐶𝑖 )/𝜏∑
𝐶 𝑗 ∈N𝑄𝐴𝑉

𝑒𝑠 (𝑄𝑖 ,𝐶 𝑗 )/𝜏

]
(1)

where 𝜏 is a temperature parameter. 𝑠 (·) calculates the cosine simi-
larity of two vectors.

Based on the objective, MCodeSearcher incorporates the ability
to identify functionally equivalent queries and code snippets among
many non-equivalent snippets.

4.4.2 Query-Variant-View Contrastive Learning. To prompt identi-
fying the semantic similarity between queries and code snippets,
we further propose the Query-Variant-View contrastive learning.
Given a specific query, this objective requires the model to retrieve
another functionally equivalent code snippet (variant) except for
the original code (anchor). The objective can guarantee that code
snippets with the same function could have a consistent similarity
or dissimilarity to a certain query. Precisely, given a mini-batch
of 𝑁 query-code pairs, we first utilize the TransCoder-ST tool to
automatically generate a variant for each anchor in the mini-batch
through the back-translation method. The variant has functionally
equivalent semantics but is different in implementation compared

with the anchor. Then we pair the query and the generated variant
and acquire 𝑁 positive instances P𝑄𝑉𝑉 . We use the same method
as subsection 4.4.1 to construct 𝑁 × (𝑁 × 𝐾 − 1) negative exam-
ples N𝑄𝑉𝑉 , where the queue holds the generated variants. The
Query-Variant-View contrastive loss L𝑄𝑉𝑉 is fedined as:

L𝑄𝑉𝑉 = − E𝑄𝑖∼P𝑄𝑉𝑉

[
𝑙𝑜𝑔

𝑒𝑠 (𝑄𝑖 ,𝐶̃𝑖 )/𝜏∑
𝐶̃ 𝑗 ∈N𝑄𝑉𝑉

𝑒𝑠 (𝑄𝑖 ,𝐶 𝑗 )/𝜏

]
(2)

Through objective, our model learns to ensure that code snippets
that look different but are functionally equivalent could have a
similar semantic relationship with a specific query.

4.4.3 Anchor-Variant-View Contrastive Learning. As the diversity
of the code implementations, it is necessary to identify the func-
tional similarities or dissimilarities of code snippets to find the func-
tionally equivalent source code. Therefore, we design the Anchor-
Variant-View contrastive learning to pull the representations of
functionally equivalent snippets together and push functionally
non-equivalent snippets apart. Specifically, given a mini-batch of
𝑁 code snippets as anchors. We match each anchor with its corre-
sponding variant (obtained by back-translation transformation)
as a positive instance, and acquire 𝑁 positive examples P𝐴𝑉𝑉 .
Meanwhile, anchors with the other variants in the queue construct
𝑁 ×(𝑁 ×𝐾−1) negative examplesN𝐴𝑉𝑉 . The Anchor-Variant-View
contrastive loss is defined as:

L𝐴𝑉𝑉 = − E𝐶𝑖∼P𝐴𝑉𝑉

[
𝑙𝑜𝑔

𝑒𝑠 (𝐶𝑖 ,𝐶̃𝑖 )/𝜏∑
𝐶̃ 𝑗 ∈N𝐴𝑉𝑉

𝑒𝑠 (𝐶𝑖 ,𝐶̃ 𝑗 )/𝜏

]
(3)

Anchor-Variant-View contrastive learning makes code snippets
with the same functionality have similar representations in vector
space, accelerating themodel to retrieve all the proper code snippets
based on a specific query.

4.4.4 Multi-View Contrastive Learning. As illustrated in Figure 4,
we optimizeMCodeSearcher from the above three contrastive views.
To better learn the relationship between queries and snippets, we
apply a bidirectional way to optimize our model at each view. For
instance, in the aspect of Query-Anchor-View contrastive learning,
the queue contains natural language queries by enqueuing and
dequeuing peer mini-batch queries, which are regarded as nega-
tive instances, and code snippets are used as positive samples. For
concision, we utilize L𝑄𝐴𝑉 , L𝑄𝑉𝑉 , and L𝐴𝑉𝑉 to represent the
bidirectional objective of each view contrastive learning. The final
multi-view contrastive objective L𝑀𝑉𝐶𝑆 is formulated as:

L𝑀𝑉𝐶𝑆 = L𝑄𝐴𝑉 + L𝑄𝑉𝑉 + L𝐴𝑉𝑉 (4)

Based on multi-view contrastive learning, MCodeSearcher can
effectively retrieve semantically equivalent code snippets from the
codebase given a specific query.

4.5 Fine-tuning on Code Search
After the model is pre-trained on the multi-view contrastive ob-
jectives, we fine-tune it on code search task. Code search aims to
retrieve the code snippet that matches the semantics of a given
natural language query from a codebase. In this section, we mathe-
matically formalize the code search task using some basic notations
and terminologies. Specifically, we have a setD = {𝑞𝑖 , 𝑐𝑖 }𝐾𝑖=1 where
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𝑞𝑖 and 𝑐𝑖 denote a query and a code snippet. 𝐾 denotes the total
number of paired queries and code snippets in D. In the training
phase, given a mini-batch of 𝑅 paired instances from D, we feed
each query 𝑞𝑖 and code snippet 𝑐𝑖 into the pre-trained encoder,
and obtain semantic representation vectors 𝑄̂𝑖 and 𝐶𝑖 , respectively.
For each query, we take other code snippets in the mini-batch as
negative samples. Therefore, the label 𝑦𝑖 of each example belongs
to {0, ..., 𝑅 − 1}, which is denoted as the one-hot format. Then, we
optimize MCodeSearcher to select the proper code snippet from
candidate snippets. Finally, the training loss L𝐶𝑆 is formulated as:

𝑠𝑖𝑚(𝑞𝑖 , 𝑐𝑖 ) = 𝑐𝑜𝑠 (𝑄̂𝑖 ,𝐶𝑖 ) =
𝑄̂𝑇
𝑖
𝐶𝑖

∥𝑄̂𝑖 ∥∥𝐶𝑖 ∥
(5)

L𝐶𝑆 = − 1
𝑅

𝑅−1∑︁
𝑖=0

𝑦𝑖𝑙𝑜𝑔(𝑠𝑖𝑚(𝑞𝑖 , 𝑐𝑖 )) (6)

where 𝑠𝑖𝑚(𝑞𝑖 , 𝑐𝑖 ) denotes the cosine similarity for each instance. 𝑅
is the number of examples in the mini-batch.

After fine-tuning, we evaluate MCodeSearcher as follows. Given
a query, our model calculates the similarity between the query and
each snippet in the codebase, utilizing Formula 5. Then the model
ranks their similarities and selects snippets with higher similarities.

5 STUDT DESIGN
To verify the effectiveness of MCodeSearcher, we conduct a large-
scale study to answer three research questions. Next, we will de-
scribe the details of our study, including datasets, baselines, and
evaluation metrics.

5.1 Research Questions
Our study mainly answers the following research questions (RQ).

RQ1: How does MCodeSearcher perform in code search
compared with the state-of-the-art models? RQ1 aims to eval-
uate that MCodeSearcher is more effective than other methods.
We compare it with eight advanced models. Then, we assess their
performance on five representative benchmarks.

RQ2: What is the performance of MCodeSearcher on zero-
shot code search setting? RQ2 evaluates the robustness of MCode-
Searcher on the zero-shot setting, where models are directly evalu-
ated on the test set without fine-tuning.

RQ3: What is the contribution of each view contrastive
learning for the code search performance? MCodeSearcher
consists of multi-view contrastive objectives, e.g., Query-Anchor-
View, Query-Variant-View, and Anchor-Variant-View. We verify
the contribution of each view for code search.

5.2 Datasets
Datasets for milti-view contrastive learning. We utilize Code-
SearchNet [15] dataset for multi-view contrastive learning. Specifi-
cally, we optimize MCodeSearcher using only the bimodal Java and
Python corpus of CodeSearchNet, respectively, including 542,991
and 503,502 query-code pairs. For each code snippet, we generate
one variant utilizing the translation tool and filter out the syntactic
error programs. For the program that can not be translated, we use
its original code snippet as the variant. Compared to the existing
state-of-the-art retrieval model [20], the size of our contrastive

Table 1: Statistics of code search datasets.

Dataset Train Valid Test Codebase

CodeSearchNet-Java [15] 164923 5183 10955 40,347
CodeSearchNet-Python [15] 251820 13914 14918 43827
CoSQA [14] 19604 500 500 6267
StaQC [43] 203700 2600 2749 14579
WebQuery [28] – – 1,046 –

dataset is much smaller. Following common practices [9, 13], we
use the RoBERTa tokenizer to tokenize the code and the natural
language query, which is based on Byte-Pair Encoding (BPE) algo-
rithm [35]. The size of the queue is set to 128. The 𝜏 is set to 0.05,
and the dropout probability is set to 0.1. We use the AdamW [26] for
optimizing. The initial learning rate is 1e-4, and the warm-up step is
2000. We optimize MCodeSearcher for 100,000 steps on 4×NIVDIA
V100S with a total batch size of 128.

Datasets for Code Search. We conduct experiments on five
representative datasets including CodeSearchNet [15], CoSQA [14],
StaQC [43], and WebQuery [28]. For CodeSearchNet dataset, we
process it and make sure no overlapping instances with the dataset
used in multi-view contrastive learning. We only evaluate MCode-
Searcher on Java and Python languages of CodeSearchNet since
TransCoder-ST only supports Java, Python, and C++ languages dur-
ing multi-view contrastive learning. CoSQA dataset [14] consists of
19,604 labeled instances in Python language, where the queries are
collected from the search logs of the Microsoft Bing search engine 3

and the code snippets come from Github 4. StaQC dataset [43] is
crawled from Stack Overflow 5, which contains a large collection
of annotated code snippets, and some queries are linked to one or
more relevant snippets in the collection.

Considering that code search engines aim to find code snippets
that are semantically equivalent to a query, it can be divided into
two scenarios: code retrieval task and code question answering
task. To further evaluate MCodeSearcher, we further introduce
WebQuery dataset [28] for code question answering. The dataset
only contains the test set in Python language. We use the training
set of the CoSQA dataset to train our model and test it onWebQuery
since the two datasets have almost the same collections and data
format. The statistics of all datasets are shown in Table 1.

5.3 Baselines
We compare our MCodeSearcher with eight advanced models. They
are all transformer-based pre-trained methods and can be divided
into two categories according to their architectures: the encoder-
only method and the encoder-decoder method. The encoder-only
method includes RoBERTa [25], CodeBERT [9], GraphcodeBERT [13],
SyncoBERT [41], CoCoSoDa [36], and CodeRetriever [20]. The
encoder-decodermethod contains SPT-Code [30] andUniXcoder [12],
which have more parameters than the encoder-only model. Our
MCodeSearcher is the encoder-only method.

• RoBERTa [25]: Pre-trained on CodeSearchNet [15] corpus
with masked language modeling [5] task.

3https://www.bing.com/
4https://github.com/
5https://stackoverflow.com/

https://www.bing.com/
https://github.com/
https://stackoverflow.com/
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Table 2: Comparison of the performances on code retrieval task and code question answering task. All models are fine-tuned
on the same datasets. CSN denotes the CodeSearchNet dataset. Numbers in bold mean the best score among all models.

Models Python (CSN) Java (CSN) CoSQA StaQC WebQuery

MRR MRR MRR MRR F1 Acc

Encode-Only

RoBERTa [25] 58.70 59.90 60.30 20.85 40.55 45.41
CodeBERT [9] 67.20 67.60 64.70 23.40 41.48 51.27
GraphcodeBERT [13] 69.20 69.10 67.50 23.80 44.31 54.39
SyncoBERT [41] 72.40 72.30 – – – –
CoCoSoDa [36] 71.70 72.60 – – – –
CodeRetriever [20] 75.80 76.50 75.40 24.20 – –

Encode-Decoder
SPT-Code [30] 69.90 70.00 – – – –
UniXcoder [12] 72.17 72.67 70.10 25.74 45.02 55.74

MCodeSearcher 83.54 79.57 77.23 25.93 46.53 57.07
(↑ 10.21%) (↑ 4.01%) (↑ 2.43%) (↑ 0.74%) (↑ 3.35%) (↑ 2.39%)

• CodeBERT [9]: Learn unified representations for both code
snippets and natural language queries with masked language
modeling and replaced token detection tasks.

• GraphCodeBERT [13]: Consider the data flow of code snip-
pets, and introduce two structure-aware tasks, e.g., data flow
edge prediction task and node alignment task.

• SyncoBERT [41]: Construct a syntax-guided contrastive
pre-training approach. Besides, the model also introduces
the identifier prediction task and the abstract syntax tree
(AST) edge prediction task.

• SPT-Code [30]: Propose three code-oriented sequence-to-
sequence tasks, including masked language task, code-AST
prediction task, and method name generation task.

• UniXcoder [12]: It is a unified contrastive pre-trainedmethod
that leverages multi-modal contents, i.e., queries and ASTs,
to support code-related tasks.

• CoCoSoDa [36]: It augments queries and programs, and
proposes multimodal contrastive objectives for code search.

• CodeRetriever [20]: The model combines unimodal and bi-
modal contrastive objectives to learn function-level semantic
representations of code snippets.

5.4 Evaluation Metrics
For automatic evaluation, we adopt Mean Reciprocal Rank (MRR)
to measure the effectiveness of MCodeSearcher. MRR is a statistic
measure algorithm that is widely used in code search task [13, 30,
40]. Specifically, MRR is the average of the reciprocal ranks of results
for a set of queries. The reciprocal rank of a query is the inverse of
the rank of the first matched result. The MRR is formulated as:

MRR =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

1
Rank𝑖

(7)

where |𝑄 | is the size of the query set. Rank𝑖 denotes the place of
the first correct code snippet for the query 𝑖 . The higher the MRR
value is, the better the code retrieval performance is.

For code question answering, it asks models to judge whether a
code snippet answers a given natural language query, which can
be formulated into a binary classification problem. We use the F1
score and Accuracy value to measure results.

6 RESULTS AND ANALYSES
In our first research question, we evaluate the performance of
MCodeSearcher with respect to other code search methods.

RQ1: How does MCodeSearcher perform in code search
compared with state-of-the-art models?

Setup.We compare MCodeSearcher with eight advanced code
search approaches (Section 5.3). Then, we use MRR, F1, and Ac-
curacy (Section 5.4) to measure the performance of different ap-
proaches on five code search datasets (Section 5.2).

Results. The results on five datasets are shown in Table 2. The
values in parentheses are relative improvements compared to the
state-of-the-art baseline.

Analyses. (1) MCodeSearcher achieves the best performance
among all models. Compared to the state-of-the-art baselines, in
terms of MRR, MCodeSearcher brings 10.21% and 4.01% relative im-
provements on CodeSearchNet-Python and -Java corpus; on CoSQA
and StaQC datasets, our method achieves 2.43% and 0.74% relative
improvements. The significant improvements prove the effective-
ness of our MCodeSearcher. (2) MCodeSearcher is superior to other
contrastive learning methods. Among all baselines, besides the first
three baselines, other models all introduce the contrastive learning
method, especially CoCoSoDa and CodeRetriever designed for code
search. The performance of our MCodeSearcher is better than the
counterpart of these methods, which demonstrates the superiority
of our multi-view contrastive learning. We attribute the impressive
performance to two reasons. The first is that MCodeSearcher learns
the semantic correlation between code snippets and queries from
Query-Anchor-View and Query-Variant-View contrastive learning.
Another reason is that Anchor-Variant-View contrastive learning
prompts the representations of source codes, despite facing the
diversity of code competition scenarios. (3) The performance of
MCodeSearcher with an encode-only backbone is better than the
encode-decoder models. As described in Section 5.3, SPT-Code and
UniXcoder are both encoder-decoder models that have more pa-
rameters than MCodeSearcher. Our CodeSearcher can still retrieve
more correct code snippets which demonstrates the effectiveness
and efficiency of our method. (4) MCodeSearcher also has an ad-
vantage to the code question answering. It achieves the best results
on the WebQuery dataset. The satisfying results show that our
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Table 3: Evaluation results of different models on the zero-shot setting. All models are evaluated without fine-tuning.

Models
Python (CSN) Java (CSN) CoSQA StaQC WebQuery

MRR MRR MRR MRR F1 Acc

CodeBERT 0.03 0.02 1.16 0.00 2.25 4.32
GraphCodeBERT 0.40 0.70 0.80 0.20 3.72 6.27
CodeRetriever 67.70 69.00 47.50 15.50 – –
MCodeSearcher 76.38 75.71 71.64 17.30 26.95 31.87

(↑ 12.82%) (↑ 9.72%) (↑ 50.82%) (↑ 11.61%) (↑ 389.11%) (↑ 328.94%)

model can correctly judge whether a code snippet answers a given
query, and further demonstrate that MCodeSearcher can effectively
identify the semantic similarity of queries and code snippets.

Answer to RQ1:MCodeSearcher achieves the best perfor-
mance on five datasets. In terms of MRR, MCodeSearcher
outperforms it by up to 10.21% in CSN (Python), 4.01%
in CSN (Java), 2.43% in CoSQA and 0.74% in StaQC. Be-
sides, AceCoder is effective in code question answering
with 3.35% relative improvements on F1. The significant
improvements prove the effectiveness of MCodeSearcher
in code search task.

RQ2: What is the performance of MCodeSearcher on zero-
shot code search setting?

Setup. In this RQ, we verify MCodeSearcher on the zero-shot
setting. Specifically, we directly evaluate baselines and ourmodel on
the test set without fine-tuning. Since the parameters of SyncoBERT,
CoCoSoDa and SPT-Code are unavailable, we only compare our
MCodeSearcher with the remaining models.

Results. The experimental results on five datasets are shown
in Table 3. The values in parentheses are relative improvements
compared to other models.

Analyses. (1) MCodeSearcher achieves state-of-the-art perfor-
mance compared with other baselines in the zero-shot setting.
Specifically, 12.82% and 9.72% relative improvements are achieved
on MRR at CodeSearchNet dataset than the competitive model
CodeRetriever. The impressive performance demonstrates that our
multi-view contrastive learning can sufficiently grasp the semantic
relationship of code snippets and queries even though no labeled
instances for fine-tuning. (2) The parameters of MCodeSearcher are
more suitable for code search than the parameters of GraphCode-
BERT that initialize our model. The performance of MCodeSearcher
is significantly superior to GraphCodeBERT, which reveals that our
multi-view contrastive learningmakes themodel effectively capture
the relationship between queries and code snippets.

Answer to RQ2:MCodeSearcher also has an advantage in
code search on the zero-shot setting. That is, without fine-
tuning, our MCodeSearcher achieves the best results on all
datasets, which verifies the rationality and effectiveness of
our novel multi-view contrastive learning.

Case I (Anchor):
def _get_path(self, n):
""" 
Choose one directory for spill by number n 
"""

d = self.local_dirs[n % len(self.local_dirs)]
if not os.path.exists(d):

os.makedirs(d)
return os.path.join(d, str(n))

Case I (Variant):
def _get_path(self, n):

d = self._local_dirs[n % len(self._local_dirs)]
if not os.path.exists(d):

os.makedirs(d)
return d + '/' + str(n)

Figure 5: The automatically generated code snippets through
back-translation transformation.

RQ3: What is the contribution of each view contrastive
learning for the code search performance?

Setup. We complete a comprehensive ablation study to investi-
gate the impact of each view of contrastive learning. We remove
each contrastive objective individually from our model.

Results. The experimental results are shown in Table 4. “w/o 𝛤 "
denotes removing 𝛤 module, where 𝛤 includes the Query-Anchor-
View contrastive learning (QAV), Query-Variant-View contrastive
learning (QVV) andAnchor-Variant-View contrastive learning (AVV).

Analyses. (1) All three views of contrastive learning are ben-
eficial for code search. After removing any of the views, the per-
formance drops. It validates our multi-view contrastive learning
can grasp the relationship between queries and code snippets from
different perspectives that benefits code search. (2) The importance
rank of the three views in terms of metrics is that QAV > QVV >

AVV. Particularly, QAV and QVV play an important role in improv-
ing code search task. The reason might be that these two objectives
focus more on grasping the relationship between queries and code
snippets, which are directly related to the code search task and can
provide more effective guidance.

Answer to RQ3: Each view of contrastive learning is ef-
fective for code search. QAV and QVV are more important
than AVV.
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Table 4: Effects of each view contrastive learning.

Models
Python (CSN) Java (CSN) CoSQA SO-DS StaQC WebQuery

MRR MRR MRR MRR MRR F1 Acc

MCodeSearcher 83.54 79.57 77.23 32.19 25.93 46.53 57.07
w/o QAV 77.17 77.28 74.46 29.23 24.57 45.39 55.81
w/o QVV 78.24 77.53 73.92 30.03 25.05 45.76 56.35
w/o AVV 80.53 78.09 74.85 30.47 24.82 46.16 56.43

class MyClass:
def __getitem__(self, key):

return key * 2

(a) GraphCodeBERT (Top 1)

def isclass(object):
#Return true if the object is a class.
return isinstance(object, (type, types.ClassType)

(b) MCodeSearcher (Top 1)

import inspect
class X(object):

inspect.isclass(X)
x = X()
isinstance(x, X)
y = 25
isinstance(y, X)

(c) MCodeSearcher (Top 2)

Figure 6: Retrieved results of GraphCodeBERT and MCode-
Searcher for the query “Check whether a variable is a class”.

7 DISCUSSION
7.1 Quality Analysis of Generated Variants by

Translation
As described in Section 4.2, TransCoder-ST is pre-trained on a large
amount of parallel programming data with an automated unit test
pipeline, resulting in being a reliable tool. To intuitively demon-
strate the quality and diversity of augmented code snippets, we
present a parallel example (e.g., anchor and its variant) in Figure 5.

We can find that the generated snippet has similar semantics
to its anchor. Meanwhile, its variant is different in lexicon and
implementations compared with the anchor. Specifically, both of
“os.path.join(d, str(n))” and “d + ‘/’ + str(n)” means getting a direc-
tory, but they are implemented in disparate methods with different
syntax structures. Thus, the transformation has the reliable ability
to generate semantically equivalent and diverse code snippets for
multi-view contrastive learning.

7.2 Quality Analysis on Code Search
7.2.1 Features visualization of queries and code snippets. To intu-
itively understandwhy ourmulti-view contrastive learning achieves
impressive performance on code search, we give a visualization of
code vectors and query vectors on GraphCodeBERT and MCode-
Searcher by t-SNE [38]. Specifically, we randomly select one hun-
dred query-code pairs in CoSQA dataset [14] for visualizing since
the dataset can reflect the distribution of real user queries issued in

search engines. Then we feed them into pre-trained GraphCode-
BERT and MCodeSearcher, where both of them are without fine-
tuning, to obtain representation vectors of queries and code snip-
pets, respectively. Then t-SNE is applied to reduce the dimensional-
ity of vectors into two-dimensional space. As presented in Figure 7,
each number represents a query or a code snippet, and each query-
code pair shares the same color and number. Figure 7(a) shows
the result of GraphCodeBERT. We can observe that the vectors
of paired query and code snippet are far apart though they have
the same semantics. Figure 7(b) illustrates the results of MCode-
Searcher, where the features of code snippets and queries are well
entangled, and each query-code pair in the vector space is clus-
tered by functionality. For example, the distance of vectors of the
“55” (or “88”) query-code pair is much smaller after our multi-view
contrastive learning. This phenomenon can be explained by the
fact that our multi-view contrastive learning can effectively cluster
the semantically equivalent queries and code snippets, and facili-
tate MCodeSearcher to retrieve the semantically equivalent code
snippets from the codebase given a certain query.

(a) GraphCodeBERT (b) MCodeSearcher

Figure 7: t-SNE visualization of representations of queries
and code snippets in GraphCodeBERT and MCodeSearcher
without fine-tuning. Each number represents a query or a
code snippet, and each query-code pair shares the same color
and number.

7.2.2 Case Study. To further provide some insights on MCode-
Searcher, we show some retrieved cases on GraphCodeBERT and
MCodeSearcher. Figure 6 shows the retrieved result of the query
“Check whether a variable is a class”. “Top K” means the result is
ranked in the K-th position among the retrieved list.We can find that
the retrieved code snippets of GraphCodeBERT are completely un-
matched with the query. When turning to MCodeSearcher, the first
two retrieved results both satisfy the demand of the query, which
demonstrates that our multi-view contrastive learning method can
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facilitate the model to identify semantically equivalent code snip-
pets that match the query.

8 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel multi-view contrastive learning
model, MCodeSearcher, for code search task. MCodeSearcher con-
siders the Query-Anchor-View, Query-Variant-View, and Anchor-
Variant-View contrastive objectives to promote identifying the
semantic similarities or dissimilarities between queries and code
snippets. We conduct extensive experiments on five representative
datasets. The experimental results show that the proposed MCode-
Searcher substantially outperforms the state-of-the-art models.
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