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Abstract

Recently, Large Language Models (LLMs) have shown
impressive abilities in code generation. However, existing
LLMs’ decoding strategies are designed for Natural Lan-
guage (NL) generation, overlooking the differences between
NL and programming languages (PL). Due to this oversight, a
better decoding strategy for code generation remains an open
question. In this paper, we conduct the first systematic study
to explore a decoding strategy specialized in code genera-
tion. With an analysis of loss distributions of code tokens,
we find that code tokens can be divided into two categories:
challenging tokens that are difficult to predict and confident
tokens that can be easily inferred. Among them, the challeng-
ing tokens mainly appear at the beginning of a code block.
Inspired by the above findings, we propose a simple yet effec-
tive method: Adaptive Temperature (AdapT) sampling, which
dynamically adjusts the temperature coefficient when decod-
ing different tokens. We apply a larger temperature when
sampling for challenging tokens, allowing LLMs to explore
diverse choices. We employ a smaller temperature for confi-
dent tokens avoiding the influence of tail randomness noises.
We apply AdapT sampling to LLMs with different sizes and
conduct evaluations on two popular datasets. Results show
that AdapT sampling significantly outperforms state-of-the-
art decoding strategy.

Introduction
Code generation aims to automatically generate a pro-
gram that satisfies a natural language requirement (Li et al.
2023d,a,b). In recent years, Large Language Models (LLMs)
have attracted great attention for their potential for automat-
ing coding (Li et al. 2023c,e). Noteworthy models like Al-
phaCode (Li et al. 2022) and Codex (Chen et al. 2021) have
demonstrated their impressive ability to solve unforeseen
programming challenges.

LLMs rely on a decoding strategy to generate code. Exist-
ing LLM’s decoding strategies for code generation mainly
fall into two categories. The first category is search-based
methods, which aim to maximize the probability of the
next generated token, including greedy search (Black and
E 2012) and beam search (Freitag and Al-Onaizan 2017).
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Figure 1: An illustration of a code snippet and its corre-
sponding loss distribution. The challenging tokens are high-
lighted in yellow.

Nonetheless, the results generated by these methods lack di-
versity and are prone to generating empty or repetitive re-
sults (Zhang et al. 2021). The second category is sampling-
based methods, which randomly sample the next token
based on the probability distribution. The state-of-the-art
(SOTA) approach (Chen et al. 2021) uses temperature sam-
pling that reshapes the probability distribution by introduc-
ing a temperature coefficient to control the level of sampling
randomness.

Despite the promising results, temperature sampling has
limitations in code generation. Since it is initially used to
generate Natural Language (NL) with a flexible syntax, its
effectiveness decreases when transitioning to code genera-
tion, which is a high-accuracy demanding task. For instance,
CodeGeeX (Zheng et al. 2023), when utilizing tempera-
ture sampling, attains 36.0% Pass@15 on the HumanEval
dataset. Thus, it is necessary to explore more advanced de-
coding strategies to improve the accuracy of LLMs in code
generation.

In this paper, we present the first systematic study to ex-
plore a decoding strategy for code generation with LLM.
Our contributions can be summarized as follows:

(1) By analyzing the loss distribution of code tokens,



we categorize code tokens into challenging tokens and
confident tokens. We design comparative experiments to in-
vestigate the differences in loss distributions between source
code and NL text. Our analysis reveals that the source code
suffers lesser variation in loss values during generation than
NL text. Next, we visualize the loss distribution of source
code. We find an apparent discrepancy in loss values among
different code tokens. In this study, we refer to these tokens
with high loss values as challenging tokens. With statistical
analysis, we find that challenging tokens frequently appear
at the beginning of a code block. An illustration of the chal-
lenging tokens is shown in Figure 1. The remaining tokens,
characterized by low loss values for LLMs, are referred to
as confident tokens.

(2) In light of our findings, we propose Adaptive Tem-
perature (AdapT) sampling, which dynamically adjusts
the temperature coefficient. Compared to standard tem-
perature sampling, AdapT sampling dynamically adjusts the
temperature coefficient T according to the type of next-
tokens. Our motivation is that LLMs require exploring di-
verse choices for challenging tokens. For confident tokens,
we should select tokens with high probabilities. Specifically,
for challenging tokens, AdapT sampling utilizes a high T
value to increase sample diversity. AdapT sampling uses a
low T value for confident tokens to minimize randomness
noise.

(3) Experimental results show that AdapT sampling
can improve the pass@k metric on HumanEval and
MBPP datasets with different sizes of LLMs. We apply
the AdapT sampling to multiple LLMs with various sizes
(from 2B to 13B) and conduct evaluations on two repre-
sentative code generation datasets (HumanEval and MBPP).
Experimental results show AdapT sampling outperforms the
SOTA decoding strategy which uses a standard tempera-
ture sampling. For example, it surpasses the pass@15 met-
ric over the SOTA method by up to 13.6% on HumanEval.
We further investigate the robustness of AdapT sampling
to different hyperparameter settings and the quality of the
code generated by AdapT sampling. Our code is available at
https://github.com/LJ2lijia/AdapT.

(4) Future directions. Based on our findings, we list the
current challenges and propose future research directions on
developing effective decoding strategies for code generation.

Background

Code Generation with LLMs

LLMs are transformer-based models that are trained using
large corpora of NL text and source code. In recent years,
LLMs have achieved impressive results in automatic code
generation. Among LLMs, the GPT family of LLMs from
OpenAI is popular and powerful, including GPT-3 (175B
parameters) (Brown et al. 2020), Codex (175B parameters)
(Chen et al. 2021), etc. Since OpenAI LLMs are closed-
source, there have been many attempts to reproduce similar
LLMs, such as CodeGen (Nijkamp et al. 2022a), CodeGeeX
(Zheng et al. 2023), InCoder (Fried et al. 2022).

Decoding Strategy

Given a requirement x, LLMs rely on a decoding strategy to
generate the code auto-regressively. The decoding strategy
determines how LLMs select the next token yt based on the
context y<t, x. y<t is the token sequence that has been gen-
erated. There has been a series of works exploring decoding
strategies for NL generation, and these methods have been
subsequently applied to code generation. They can be clas-
sified into two categories: search-based and sampling-based
methods.

Search-based Decoding Stratrgy Greedy search (Mou
et al. 2015) is one of the most commonly used de-
coding strategies. In greedy search, the model selects
the next token which maximizes the probability: yt =
argmaxy p(yt|y<t, x). Despite its simplicity, it may lead to
overly conservative results and a lack of diversity (See et al.
2019). Beam search (Freitag and Al-Onaizan 2017) is an im-
proved version of greedy search. This algorithm retains top
B (beam size) tokens with the highest probability. However,
it has been found that beam search results in degenerations
such as repetitions and empty (Holtzman et al. 2019).

Sampling-based Decoding Strategy The degenerations
such as empty sequences and repetitions can be alleviated
using sampling decoding, which randomly selects the next
token based on predicted probability.

Temperature sampling (Ackley, Hinton, and Sejnowski
1985) has been applied widely, it uses a temperature coef-
ficient T (usually ∈ [0, 1]) to control the sampling random-
ness. Given the logits u and temperature T , the softmax dis-
tribution p′ is re-estimated as:

p′(yt|y<t, x) =
exp( (u(yt|y<t,x))

T )∑n
j=1 exp(

(u(yj |y<t,x))
T )

(1)

In addition, researchers propose Top-k (Fan, Lewis, and
Dauphin 2018) sampling to further improve performance. At
each step, Top-k sampling filters the k most probable next
tokens and redistributes the probability among these k to-
kens for sampling. However, the unreliable tail problem in
the Top-k sampling may affect the sampling quality. Top-p
sampling (Holtzman et al. 2019) eliminates the unreliable
tail problem by sampling from the smallest token set whose
cumulative probability reaches the threshold p.

LLMs usually use the method of combining tempera-
ture sampling and Top-p sampling to achieve SOTA results
(Chen et al. 2021; Nijkamp et al. 2022a; Fried et al. 2022).
Specifically, the logits are first rescaled with temperature T .
After this, Top-p sampling is employed to derive the final
results. Existing work (Chen et al. 2021) finds out that tem-
perature coefficient T has an obvious influence on the code
generation results. Increasing the T value can enhance the
chance of exploring the correct answers, but this comes at
the cost of introducing more errors in the generation results.
Therefore there is a need to develop more effective sampling
methods specifically for code generation.
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Figure 2: Comparison of loss distributions on NL text and source code. The left table shows the statistical results of different
distributions on 40 samples. The right figures show several examples of loss distributions on NL text and source code.

Analysis of the code generation process
In this section, we first investigate the differences between
NL generation with LLMs and code generation with LLMs.
We compared NL text’s loss distributions (i.e., cross-entropy
loss (Brownlee 2019)) to ones of source code.

Furthermore, we analyze the fluctuations of loss values of
code tokens within code snippets. We find that code tokens
can be categorized into challenging tokens and confident to-
kens. Based on the analysis, we discuss the challenges en-
countered in code generation.

Loss Distribution Comparison
In this section, we analyze the differences between the pro-
cess of generating NL text and source code with LLMs. We
choose loss distribution as the comparison metric.

We conduct experiments with a powerful LLM for source
code - CodeGen. We select the CodeGen-mono with 2 bil-
lion parameters (CodeGen-2B) as the base model. This
model is trained with a 635GB code corpus and 1159GB
English text data. Therefore, CodeGen can generate NL text
and code. The datasets used in this section are HumanEval
(Chen et al. 2021) and MBPP (Austin et al. 2021), which are
representative datasets in code generation.

First, we randomly select 20 code samples each from Hu-
manEval and MBPP datasets. Then, we manually write NL
descriptions for each code snippet, which describes the func-
tionality of the code. We keep the alignment of the length of
NL and code as much as possible while maintaining text flu-
ency. As a result, we obtain 40 NL descriptions aligned with
their corresponding code snippets. Next, we gather the loss
values of the CodeGen model on these NL descriptions and
code snippets, respectively.

We use various metrics (e.g. mean value (Runnenburg
1978), standard deviation, skewness, and perplexity) to com-
pare the loss distributions of NL descriptions and source
code. Standard deviation (Bland and Altman 1996) reflects
the average amount of variability. Skewness (Brown 2011)
is a measure of the asymmetry of the probability distribution
of a real-valued random variable about its mean. Perplexity

(Brown et al. 1992) is a measurement of how confidently
an LLM predicts a sample. As shown in the table in Figure
2, the average value of losses on NL descriptions is higher
than the one on the source code. When compared with code,
NL suffers greater variation in prediction loss during gener-
ation. The value of the skewness shows that there are more
tokens with large loss values in NL descriptions than in the
source code. The LLM also has a higher perplexity for NL
descriptions than for source code. We show a few examples
in Figure 2 to visualize the differences.

These differences arise because source code has a more
strict syntax and semantics compared to NL. Therefore,
when generating code, some tokens can be easily inferred
based on grammatical rules, and LLMs can confidently gen-
erate these tokens with low loss values. In contrast, NL al-
lows greater freedom in word usage and often presents mul-
tiple viable choices for the same context, which results in
high loss values.

Additionally, we find that a number of peaks occur in
loss distributions of source code, i.e., tokens with a higher
loss value than nearby tokens. A higher loss value means
that it is more difficult to make correct predictions at these
locations. We call the tokens with peak loss values challeng-
ing tokens. As for the tokens that have low loss values, the
model has more confidence in predicting them correctly. We
refer to them as confident tokens.

In-depth Study of Code Tokens
This section provides a detailed investigation of the chal-
lenging tokens and confident tokens. We analyze samples
from the MBPP (Austin et al. 2021) (500 samples), Hu-
manEval (Chen et al. 2021) (164 samples), and APPS
(Hendrycks et al. 2021) (train set: 5000 samples) datasets.
We use CodeGen-2B to generate the ground truth code in
these datasets and collect the corresponding loss values.

First, we define the predictive difficulty (PD) of a token,
which is the rank (%) of the token loss among all token loss
values in the code snippet, and compute PDs for all tokens.
Then, we split each code snippet into code lines and inte-
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Figure 3: The prediction difficulty of different positions, the x-axis represents the position of the token within the line of code,
and the y-axis represents the prediction difficulty of the token.

grate (average) the tokens’ PDs in the same position of dif-
ferent code lines to obtain the position prediction difficulty.
Finally, we statistically average the position prediction diffi-
culty across all codes in the dataset. We omit positions where
the cumulative data numbers of these positions are below 5%
of the overall token numbers. Figure 3 shows the position
prediction difficulty of different token positions. The results
reveal the regularity that the tokens in the first position of
code lines have the highest prediction difficulty of 69.0%
(HumanEval), 73.1% (MBPP), and 71.9% (APPS). There-
fore, we assume that the first position in each code line is
where challenging tokens tend to appear and conduct further
experiments.

We distinguish between challenging tokens and confident
tokens based on PD. We introduce a threshold H to sepa-
rate two types of tokens. Tokens with PD > H are cate-
gorized as challenging tokens, while tokens with PD < H
are categorized as confident tokens. We set H=0.9, and the
proportion of challenging tokens appearing in the first posi-
tion was 24.8% (HumanEval), 22.6% (MBPP), and 28.1%
(APPS), respectively. The results confirm our assumption
that the challenging tokens are not randomly distributed for
different locations, they tend to appear at the first position of
each code line.

To further investigate the properties of challenging tokens,
we distinguish the tokens at the first position of each line
based on whether it is the initial token of a code block. A
code block in Python is a piece of Python program text that
can be executed as a unit. The code block begins at the first
indented statement and continues until the indentation re-
turns to a previous level. The initial token of the code block
has a prediction difficulty of 79.8% (HumanEval), 83.4%
(MBPP), and 82.5% (APPS) which is significantly higher
than the first positions of other code lines. We derive that
among the first positions of code lines, the initial token of
each code block is the most likely place for a challenging
token to appear.

This can be attributed to the fact that LLMs need to de-
termine the next control structure after a block of code is
presented, which increases prediction difficulty. LLMs can
easily generate the next token after receiving the initial to-
ken since the strict syntax rules limit the scope of variations.

AdapT sampling
In light of our findings, we propose a simple yet effec-
tive decoding method, AdapT sampling (Adaptive Tempera-
ture Sampling), which adjusts the temperature coefficient T
for different tokens. Specifically, for the challenging tokens,
which LLMs struggle to predict correctly, AdapT sampling
uses a high temperature coefficient which introduces more
diverse tokens. On the other hand, for confident tokens, the
temperature coefficient is set to a small value to minimize
randomness noises. Specifically, we formulate AdapT sam-
pling as follows:

p′(yt|y<t, x)) =
exp( (u(yt|y<t,x))

T (t) )∑n
j=1 exp(

(u(yj |y<t,x))
T (t) )

(2)

T (t) =

{
a if yt is the code block initial token
b else (3)

where T is the temperature coefficient and t is the sample
timestep. a, b ∈ [0, 1] (a > b) are hyperparameters that con-
trol the degree of sampling randomness.

Experiments
Benchmarks
HumanEval (Chen et al. 2021) is a Python code generation
benchmark with 164 test samples. Each sample consists of
a manually written programming problem, which consists
of a natural language requirement, a function signature, and
several unit tests. It asks LLMs to generate the function body
based on the requirement and the signature. The unit tests are
used to check the correctness of generated functions.
MBPP (Austin et al. 2021) contains 974 programming prob-
lems collected from real-world communities. Solving these
programming problems requires simple numeric manipula-
tions and the basic usage of standard libraries. Each problem
contains an English requirement, a Python function signa-
ture, and three test cases. We take the requirement and the
function signature as input and leverage LLMs to generate
the function body. Then, the generated code is evaluated us-
ing test cases.



Metric pass@5 pass@10 pass@15
CodeGen:
SP, T=0.2 29.2 31.3 32.3
SP, T=0.4 33.4 37.9 40.8
SP, T=0.6 33.1 38.0 40.8
SP, T=0.8 32.7 39.7 43.9
AdapT 34.4 40.1 43.9
InCoder:
SP, T=0.2 22.8 25.9 27.4
SP, T=0.4 25.0 29.8 32.3
SP, T=0.6 24.5 30.0 32.9
SP, T=0.8 22.3 28.6 32.9
AdapT 25.8 31.6 35.3
CodeGeeX:
SP, T=0.2 24.1 27.1 28.7
SP, T=0.4 27.0 30.5 32.3
SP, T=0.6 27.7 32.5 35.4
SP, T=0.8 27.1 33.0 36.0
AdapT 29.4 36.3 40.9

Table 1: The performance (pass@5, 10, 15) for CodeGen-
2B, InCoder-6B, and CodeGeeX-13B on the HumanEval
dataset using AdapT sampling and SOTA (SP) method.

Base Models
In this paper, we select three representative open-source
LLMs as base models: CodeGen, InCoder, and CodeGeeX.
CodeGen (Nijkamp et al. 2022b) is a family of LLMs pre-
trained on a large amount of NL texts and source code. It
is trained with a 635GB code corpus and 1159GB English
text data. In this paper, we select the CodeGen-mono with 2
billion parameters as the base model.
InCoder (Fried et al. 2023) is pre-trained with a large cor-
pus of permissively licensed code (216GB). It can perform
code generation and code infilling. In this paper, we use a
version with 6.7 billion parameters, named InCoder-6B, for
code generation.
CodeGeeX (Zheng et al. 2023) is a multilingual LLM with
13 billion parameters. It is pre-trained on a large corpus of
more than 20 programming languages and achieves impres-
sive performance on code generation.

Despite OpenAI models’ impressive performance, we can
not access the probability distribution with only API calls.
Therefore, we ignore these models in this paper.

Baselines
In this paper, we choose the SOTA approach mentioned
in the background section as the baseline. For the sake of
brevity, we refer to the baseline (reshaping distribution with
temperature sampling) as SP in the following sections.

Implementation Details
We run all of our experiments on 2 NVIDIA V100 GPUs
with 32GB memory. For our experimental datasets, the max-
imum generated length is 500. All experiments are con-
ducted in a zero-shot setting which means we directly feed
the input requirement into LLMs without examples. Then
we extract generated programs from the model’s output.

Metric pass@5 pass@10 pass@15
CodeGen:
SP, T=0.2 33.1 36.5 38.4
SP, T=0.4 37.0 42.1 45.0
SP, T=0.6 37.1 43.5 47.0
SP, T=0.8 35.2 43.1 47.0
AdapT 37.2 44.4 48.2
InCoder:
SP, T=0.2 23.0 27.4 29.2
SP, T=0.4 26.0 29.6 32.4
SP, T=0.6 24.6 30.4 34.6
SP, T=0.8 23.6 30.6 34.6
AdapT 26.8 32.9 36.8
CodeGeeX:
SP, T=0.2 20.7 23.3 22.4
SP, T=0.4 23.7 28.4 31.0
SP, T=0.6 24.8 31.2 34.8
SP, T=0.8 25.4 31.2 35.6
AdapT 25.8 32.2 36.0

Table 2: The performance (pass@5, 10, 15) for CodeGen-
2B, InCoder-6B, and CodeGeeX-13B on the MBPP dataset
using AdapT sampling and SOTA (SP) method.

Metric
Pass@k Pass@k (Chen et al. 2021) measures the func-
tional correctness of the generated code by executing test
cases. We use the unbiased version of pass@k, where n ≥ k
samples are generated for each problem, and c ≤ n is the
number of correct samples that pass test cases. Pass@k is
calculated as follows:

pass@k = EProblems

1−
(

n− c
k

)
(

n
k

)
 (4)

12.0%

17.0%

22.0%

27.0%

32.0%
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pass@k vs. k, temperature

greedy T=0.1 T=0.2 T=0.3 T=0.4 T= 0.5
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greedy search

SP with 
different T

AdapT 

Figure 4: The performance of CodeGeeX-13B on the Hu-
manEval dataset with dense temperature settings.

Main Results
We apply AdapT sampling to three base models on two code
generation datasets. The performance is shown in Table 1



Dataset HumanEval MBPP
CodeGen:
Greedy Search 23.8 24.0
SP-best 22.2 24.6
AdapT 23.3 24.9
InCoder:
Greedy Search 14.0 12.3
SP-best 15.3 13.8
AdapT 15.2 14.8
CodeGeeX:
Greedy Search 18.9 13.6
SP-best 18.0 13.4
AdapT 18.8 13.5

Table 3: Pass@1 results for CodeGen-2B, InCoder-6B, and
CodeGeeX-13B using different decoding strategies on Hu-
manEval and MBPP datasets.

and Table 2. Following the previous works (Nijkamp et al.
2022a; Zheng et al. 2023; Fried et al. 2022), we set p of
top-p sampling as 0.95 for all our experiments. Following
the previous work (Chen et al. 2021), we set the values of
temperature of baseline as 0.2, 0.4, 0.6, and 0.8 respectively.
We experimentally select the values of a and b. The sam-
pling number n is 15. As shown in Table 1 and Table 2,
AdapT sampling outperforms the SOTA method in terms of
pass@5, pass@10, and pass@15 on HumanEval and MBPP
datasets. Pass@15 represents the number of problems solved
since the sampling number n is 15. AdapT sampling with the
highest pass@15 indicates that it solves the most problems.
Notably, on the HumanEval dataset, AdapT sampling can
enhance the pass@15 of CodeGeeX from 36.0% to 40.9%,
reaching a 13.6% improvement. Meanwhile, the number of
solved problems increased from 60 to 67. Moreover, On the
HumanEval and MBPP datasets, CodeGeeX-13B can solve
14 and 36 previously unsolved problems with AdapT, re-
spectively. When run with a constant value of T , increas-
ing T will improve the number of problems solved, but it
may reduce pass@5 (indicates the proportion of correct an-
swers sampled for each question) due to the introduction of
randomness (Chen et al. 2021; Holtzman et al. 2019). On
the other hand, AdapT sampling can dynamically adjust the
sampling randomness, thus minimizing the noise associated
with increasing T , hence consistently demonstrating an im-
provement in pass@5, 10, and 15.

Analysis and Discussion
We conduct an in-depth and comprehensive analysis of
AdapT sampling’s capabilities.

pass@1 The pass@1 metric represents the probability
that, among multiple pieces of generated code, the first piece
chosen would successfully pass a given test case. Note that
the pass@1 are very strict metrics and are hard to improve.
We compare the pass@1 results of AdapT sampling with
greedy search (which usually has a high pass@1 value) and
the best pass@1 results of SOTA (SP-best) and show the re-
sults in Table 3. Our method outperforms SP-best in 83.3%

cases on the pass@1 metric. Meanwhile, AdapT sampling
can reach a comparable pass@1 when compared with greedy
search. Greedy search can only sample one answer per ques-
tion, whereas our method can sample n answers and increase
the number of solved questions.

Compare with Different T Settings To explore the upper
bound performance of SP, we set the temperature value in
SP more densely from 0 to 1, taking a value every 0.1 in-
tervals. The results are shown in Figure 4. The performance
is not displayed on the resulting graph when T ≥ 1, since
it drops significantly when T ≥ 1. AdapT sampling sig-
nificantly outperforms temperature sampling at all settings
on pass@5, pass@10, and pass@15. The LLM can only
answer 31 questions correctly with a greedy search. Using
the AdapT sampling method, LLM can solve twice as many
problems (67) as greedy search.

Hyperparameters Analysis There are two hyperparame-
ters involved in AdapT sampling: a and b. In this section,
we examine how changing these two parameters affects the
code generation results.

First, we fix a = 0.8, and we take a b value every 0.1
step from 0.1 to 0.9, the experimental results are displayed
in the upper part of Figure 5. AdapT sampling outperforms
SP (T = 0.8) on pass@1, pass@5, pass@10, and pass@15
metrics when b equals 0.3, 0.5, 0.6, and 0.7. Then we set
b = 0.3, and vary the value of a from 0.1 to 0.9 with a step
of 0.1. The results are shown at the bottom half of Figure
5. It can be seen from the experimental results that when
a > b, the results of pass@5, pass@10, and pass@15 can be
effectively improved. Additionally, changing a from 0.2 to
0.9 can increase pass@15 from 32.9% to 37.8%, achieving
a 14.9% improvement.

The results indicate that AdapT sampling can outperform
SP under a variety of settings, which confirms the robustness
of AdapT sampling over hyperparameters. The empirical hy-
perparameter guidelines are: for optimizing pass@k (k >1),
set a to approximately 0.8 and b to around 0.5; for optimiz-
ing pass@1, set a to approximately 0.2 and b to around 0.01.

Code Quality Evaluation In this section, we analyze the
quality of code generated by different sampling methods on
the HumanEval dataset. We collect the execution results of
the generated code of three models and present them in Fig-
ure 6. AdapT sampling can generate more correct samples
(passed) than baselines on all models. Using AdapT sam-
pling, CodeGen-2B, InCoder-6B, and CodeGeeX-13B can
generate 517, 333, 382 correct codes, which outperforms SP
up to 17.2%, 8.8%, 14.0% higher than sampling with the SP
method, respectively.

There are fewer TypeError and SyntaxError in the code
generated by the three models using AdapT sampling than
SP. By using AdapT sampling in CodeGen and CodeGeeX
models, the occurrence of NameError can be reduced by
44.3% and 23.4%. In CodeGen and CodeGeeX, AdapT sam-
pling reduces the incidence of NameError by 44.3% and
23.4%. The else section in Figure 6 contains Indentation-
Errors, RecursionErrors, UnboundLocalErrors, RuntimeEr-
ror, etc. These types of errors rarely occur in our AdapT



Figure 5: Quantitative analysis of the two hyperparameters (a, b) in AdapT sampling. The upper half shows the results vary b
from 0.1 to 0.9 when fixing a = 0.8. The bottom half shows the results of fixing b = 0.3 and taking values of a from 0.1 to 0.9.
When a > b, the AdapT sampling can outperform SP with multiple settings. The model and dataset used in this section are
CodeGeeX-13B and HumanEval.

Figure 6: Evaluation of the generated code quality of AdapT
sampling. Compared with the best-performed SP, AdapT
sampling can reduce syntax errors and increase correct code
sample numbers.

sampling. The reason for this is that AdapT sampling uses
a smaller T inside the code block, which improves the co-
herence of the sampled code, and therefore reduces syntax
errors. For AdapT sampling, the most common error type is
the wrong answer, showing that our method suffers from in-
correct code logic. Taking steps to solve this issue can be a
great improvement in the future.

Future Work
In this section, we discuss the remaining challenges of de-
coding strategies in code generation and provide some pos-
sible directions to facilitate other researchers.

• We recognize some challenging tokens within state-
ments, but their distributions do not show a clear statis-

tical pattern. In the method designing process, we have
experimented with various temperature tuning functions,
such as linear decay function, exponential decay func-
tion, etc., without obtaining substantial improvement. In
future work, we plan to use learning-based methods to
adjust the temperature coefficients.

• In practice, software development often relies on spe-
cific domain knowledge, such as private code libraries
and code specifications. Existing decoding strategies ig-
nore these issues. In the future, we can introduce domain
knowledge into the decoding process, improving the us-
ability of code-generation LLMs in real-world scenarios.

• As shown in Figure 6, LLMs are suffering from incor-
rect code logic, and generating code from scratch is very
challenging. In the future, we can design a multi-stage
decoding strategy, which steers LLMs to generate code
progressively. For example, LLMs first generate a natural
language plan and then generate an executable program
based on the plan.

Conclusion
This paper is the first attempt at the LLM’s decoding strat-
egy for code generation. We statistically analyze the loss dis-
tribution of source code and find out that code tokens can
be categorized into challenging tokens and confident tokens.
Moreover, challenging tokens often appear in the initial of a
code block. Based on the insights, we propose AdapT sam-
pling which dynamically adjusts the temperature coefficient
through sampling and has proven its effectiveness on code
generation datasets. Finally, we present several challenges
and insights in developing a more advanced decoding strat-
egy for code generation and we look forward to further ex-
ploring its potential in future research.
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