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ABSTRACT
Large Language Models (LLMs) have shown great success in code
generation. LLMs take as the input a prompt and output the code.
A key question is how to make prompts (i.e., Prompting Techniques).
Existing prompting techniques are designed for natural language
generation and have low accuracy in code generation.

In this paper, we propose a new prompting technique namedAce-
Coder. Our motivation is that code generation meets two unique
challenges (i.e., requirement understanding and code implemen-
tation). AceCoder contains two novel mechanisms (i.e., guided
code generation and example retrieval) to solve these challenges.
(1) Guided code generation asks LLMs first to analyze requirements
and output an intermediate preliminary (e.g., test cases). The pre-
liminary is used to clarify requirements and tell LLMs “what to
write”. (2) Example retrieval selects similar programs as examples
in prompts, which provide lots of relevant content (e.g., algorithms,
APIs) and teach LLMs “how to write”. We apply AceCoder to three
LLMs (e.g., Codex) and evaluate it on three public benchmarks
using the Pass@𝑘 . Results show that AceCoder can significantly
improve the performance of LLMs on code generation. (1) In terms
of Pass@1, AceCoder outperforms the state-of-the-art base-
line by up to 56.4% in MBPP, 70.7% in MBJP, and 88.4% in
MBJSP. (2) AceCoder is effective in LLMs with different sizes (i.e.,
6B to 13B) and different languages (i.e., Python, Java, and JavaScript).
(3) Human evaluation shows human developers prefer programs
from AceCoder.
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1 INTRODUCTION
Code generation aims to automatically generate the source code
based on a natural language requirement [22, 23, 25]. Recently,
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Large LanguageModels (LLMs) have achieved state-of-the-art (SOTA)
results on code generation [1, 14, 15, 27, 32]. LLMs do not require
fine-tuning and take a prompt as input. A prompt consists of several
examples (e.g., <requirement, code pairs>) and a new requirement.
LLMs learn code generation from examples and analogously gener-
ate code for the new requirement.

The performance of LLMs strongly relies on the prompt surface
[51]. Thus, how to design prompts (i.e., prompting techniques)
is a popular topic. Existing prompting techniques (e.g., few-shot
prompting [11] and chain-of-thought prompting [49]) are designed
for natural language generation and have low accuracy in code
generation. For example, Codex with few-shot prompting only
achieves 37.2% Pass@1 on a real-world benchmark - HumanEval
[14]. Thus, it is necessary to explore more advanced prompting
techniques for code generation.

In this paper, we propose a novel prompting technique
specialized in code generation, named AceCoder. It signifi-
cantly improves the performance of LLMs in code generation. Our
motivation is that code generation aims to build a mapping from
natural language requirements to source code. There are two unique
challenges in this mapping, i.e., requirement understanding and
code implementation. AceCoder proposes two novel mechanisms
to alleviate two challenges. The details of AceCoder are shown as
follows.

Challenge 1: Requirement Understanding. Understanding
requirements is the starting point of code generation. In real-world
programming problems, the requirement may be a brief purpose
without specific details. For example, a requirement from a real-
world benchmark - MBPP [9] is write a function to check if
the triangle is isosceles or not. Before writing code, we
need to analyze the requirement and determine specific details, e.g.,
input-output formats, and possible exceptions.

Novelty 1: Guided Code Generation. To alleviate this chal-
lenge, we propose guided code generation. Our motivation is that
human developers often use some software artifacts to assist in ana-
lyzing requirements. For example, in test-driven development [10],
developers clarify requirements by designing test cases. It forces
developers to think about details of requirements, e.g., input-output
formats and boundary values. These test cases exactly define the
requirement and tell developers what to write.

To implement the above process, we design a special prompt con-
sisting of triple examples (i.e., <requirement, preliminary, code>).
A preliminary is a specific software artifact (e.g., test cases, APIs)
for clarifying the requirement. Given a new requirement, based on
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the prompt, LLMs first output a preliminary and then generate code
based on the preliminary. We illustrate the guided code generation
in Section 2 and describe the details in Section 3.3.

Challenge 2: Code Implementation. After understanding the
requirement, how to implement the source code using a program-
ming language is challenging. It requires LLMs to master related
grammar, algorithms, and libraries. Even for human developers, it
is difficult to write an exactly correct program from scratch.

Novelty 2: Example Retrieval. To solve the above challenge,
we propose example retrieval. It is inspired by the human devel-
opers’ code reuse. In real-world scenarios, given a new requirement,
developers often search for similar programs. They learn program-
ming skills (e.g.,APIs) or directly reuse relevant content from similar
programs [31].

Specifically, we use a retriever to search for programswith similar
requirements (e.g., Top-20). Considering the maximum input length
of LLMs is limited (e.g., 1024 tokens), the number of examples in
a prompt is also limited, such as three examples. Thus, we further
design a selector to select a set of programs from retrieved results as
examples. The selector will filter out redundant programs and pick
informative examples. Then, examples are inserted into prompts
and teach LLMs how to implement code. We illustrate the example
retrieval in Section 2 and describe the details in Section 3.2.

In conclusion, given a requirement, AceCoder generates a pro-
gram in three steps:

• Example retrieval. It uses a retriever and a selector to find similar
programs as examples, i.e., <requirement, code> pairs.
• Prompt construction. It uses an analyzer to convert retrieved
examples into <requirement, preliminary, code> triples. Then, it
concatenates triple examples with the input requirement together
to construct a prompt.
• Code generation. It feeds the prompt into LLMs. By learning
from examples, LLMs first output an intermediate preliminary
and then generate code for the input requirement.

We applyAceCoder to three representative LLMs, i.e.,CodeGeeX
[1], CodeGen [32], and InCoder [15]. We conduct extensive experi-
ments on three popular code generation benchmarks, i.e., MBPP
(Python) [9], MBJP (Java) [8], and MBJSP (JavaScript) [8]. We em-
ploy Pass@𝑘 (𝑘 = 1, 3, 5) to measure the performance of different
approaches. We obtain some findings from experimental results.
(1) AceCoder significantly outperforms existing prompting
techniques. In terms of Pass@1,AceCoder outperforms the SOTA
baseline - few-shot prompting by up to 56.4% in MBPP, 70.7% in
MBJP, and 88.4% in MBJSP. The improvements prove the superior-
ity of AceCoder in code generation. (2) AceCoder substantially
outperforms retrieval-based models. In terms of Pass@1, Ace-
Coder outperforms the SOTA retrieval-based baseline by up to
13.1% in MBPP, 23.44% in MBJP, and 15.8% in MBJSP. (3) AceCoder
is effective in LLMs of different sizes.We apply AceCoder to
three LLMs, which scale from 6B to 13B. In terms of Pass@1, Ace-
Coder improves CodeGeeX-13B by up to 88.4%, CodeGen-6B by up
to 65.5%, and InCoder-6B by up to 57.5%. (4) Human evaluation
shows that human developers prefer programs generated by
AceCoder. Results show that AceCoder outperforms the SOTA
baseline in multiple aspects, including correctness, code smell, and
maintainability. (5) We explore the contributions of different

# Write a python function to remove first and last 
occurrence of a given character from the string

（a) Input requirement:

（b) Unit tests:
(1) ("hello world", "x") -> "hello world"
(2) ("hello world", "l") -> "helo word"

def remove_Occ(s, ch):
return s.replace(ch, '', 1).replace(ch, '', -1)

（c) Few-shot Prompting:

Evaluation: (1) pass (2) fail

# Write a function to find the last 
occurrence of a character in a string
def last_occurence_char(string,char):
flag = -1
for i in range(len(string)):
if(string[i] == char):
flag = i

(more lines…)

Similar code (Top-1&Top-2):

# Write a function to count occurrence of a 
character in a string
def count_char(string,char):
(more lines…)

# Write a python function to remove the k-th
element from a given string.
def remove_spaces(str1, k):
return str1[:k] + str1[k+1:]

Similar code (Top-6):

# ("test", "x") -> "test"
# ("test", "e") -> "tst"
# ("test", "t") -> "es"
def remove_Occ(s, ch):
first_idx, last_idx = -1, -1
for i in range(len(s)):
if s[i] == ch:
if first_idx == -1:
first_idx = i

last_idx = I
# case 1: ch not in s
if first_idx == -1 and last_idx == -1:
return s

# case 2: ch appears once in s
elif first_idx == last_idx:
return s[:first_idx] + s[first_idx+1:]

# case 3: ch appears multi-times in s
else:
return s[:first_idx] + \

s[first_idx+1:last_idx] + s[last_idx+1:]

（d) AceCoder:

Evaluation: (1)(2) pass

Figure 1: A motivating example of guided code generation.

modules and discuss different designs for AceCoder. Results
show that three modules are all necessary and our designs for three
modules are superior to multiple alternates.

We summarize our contributions in this paper as follows.

• We propose a novel prompting technique named AceCoder, for
improving the performance of LLMs in code generation.
• AceCoder contains two novel techniques (i.e., guided code gen-
eration and example retrieval) to alleviate two challenges (i.e.,
requirement understanding and code implementation) in code
generation, respectively.
• We apply AceCoder in three LLMs and conduct extensive ex-
periments on three public benchmarks. Qualitative and quantita-
tive experiments show that AceCoder significantly outperforms
the SOTA baselines (e.g., chain-of-thought prompting, few-shot
prompting).

2 MOTIVATING EXAMPLES
In this section, we explain our motivations by some real cases.

Requirement Understanding→ Guided Code Generation.
Figure 1 (a) and (b) show a requirement from a real-world bench-
mark [9] and its unit test for evaluation, respectively. We select
Codex as the base model. Figure 1 (c) shows a program generated by
few-shot prompting. The program fails, as it ignores some essential
scenarios in the requirement, such as ch appearing multiple times
in s. It shows that comprehensively understanding the requirement
is crucial to write correct programs.
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# Write a function to find sequences of lowercase 
letters joined with an underscore.

（a) Input requirement:

（b) Unit tests:
(1) ('a_b_c') -> True
(2) ('a_ c_') -> False

def text_lowercase_underscore(text):
words = text.split() 
for word in words:
if word.islower() and '_' in word:
return True

return False

（c) Few-shot Prompting:

Evaluation: (1) pass (2) fail

Program-1: find sequences of literals in a string.
def find_literals(text, pattern):
match = re.search(pattern, text)
(more lines...)

Programs-2&3: re.search(…)
Program-4: split a string at lowercase letters.
def split_upperstring(text):
return re.findall("[a-z][^a-z]*", text)

（d) Retrieved Programs:

def text_lowercase_underscore(text):
import re
patterns = '^[a-z]+_[a-z]+$‘
if re.search(patterns, text):
return True

else:
return False

（e) AceCoder:

Figure 2: A motivating example of example retrieval.

Thus, we propose guided code generation, which asks LLMs to
first analyze the requirement and then generate code. Figure 1 (d)
shows a program generated by AceCoder. We consider test cases
as the intermediate preliminary. We can see that the generated
test cases cover multiple scenarios, e.g., boundary inputs ("test",
"e"). They further clarify the requirement and benefit the following
code implementation. Based on the test cases, AceCoder gener-
ates a correct program, which considers three scenarios and gives
solutions respectively. The example shows that our guided code
generation can help LLMs to analyze requirements and improve
the logical correctness of code.

Code Implementation→ Example Retrieval. After under-
standing the input requirement, how to implement the code is
challenging. It requires LLMs to use various algorithms or libraries.
Figure 2 (a) and (b) show a requirement from a real-world bench-
mark [9] and its unit test for evaluation, respectively. We select
Codex as the base model. Figure 2 (c) shows a program generated
by few-shot prompting. The program contains a wrong condition
statement highlighted in yellow. This is because the model does
not know how to judge a string containing lowercase letters joined
with an underscore.

To alleviate the above problem, we propose example retrieval.
Our motivation is that human developers often search for similar
programs and learn programming skills from them. Figure 2 (d)
shows some retrieved programs based on the similarity of require-
ments. The retrieval metric is the BM25 score. We sort the results
in descending order of BM25 score. We can see that the retrieved
programs contain lots of relevant content (e.g., re.search), which
benefits code implementation. Thus, we design a retriever to search

for similar programs as examples in prompts. We expect LLMs can
learn from similar programs how to implement new programs.

Since the maximum input length of LLMs is usually limited (e.g.,
1024 tokens), the number of examples in a prompt is limited. Thus,
we need to further select a set of programs from retrieved results as
examples. A straightforward idea is to pick top similar programs as
examples. However, as the programs are retrieved independently,
we find that retrieved results may contain redundant programs. In
Figure 2 (d), Program-1, Program-2, and Program-3 are redundant,
as all of them provide an API re.search, which teaches how to
search a pattern in the text. Program-4 contains a relevant regular
expression, which tells how to design a pattern. Suppose the number
of examples is 2. The examples will contain redundant programs
(i.e., Program-1&2) and miss more informative Program-4.

Thus, we design a selector for selecting examples, which can filter
out redundant programs in retrieved results. Suppose the number of
examples is 2. In Figure 2 (d), our selector will select Program-1 and
Program-4 as examples. Figure 2 (e) shows a program generated by
AceCoder. It successfully learns how to write regular expressions
from Program-4 and learns how to use re.search to find patterns
from Program-1.

3 METHODOLOGY
In this section, we propose a novel prompting technique for code
generation, named AceCoder. In the subsections, we first present
an overview of AceCoder and then describe its details.

3.1 An Overview
Code generation aims to generate the source code 𝑦 based on a
natural language requirement 𝑥 . AceCoder leverages large lan-
guage models (LLMs) to generate programs via prompting. Figure 3
shows an overview of AceCoder during inference. Given an input
requirement 𝑥𝑡𝑒𝑠𝑡 , AceCoder generates code in three steps.

• Example Retrieval. It uses a retriever and a selector to select 𝑘
similar <requirement, code> pairs ({𝑥𝑖 , 𝑦𝑖 }𝑘𝑖=1) from a retrieval
corpus as examples.
• Prompt Construction. It employs an analyzer to convert exam-
ples into<requirement, preliminary, code> triples ({𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 }𝑘𝑖=1).
A preliminary is a software artifact for clarifying the requirement,
such as test cases. The examples are concatenated with the input
requirement to construct a prompt.
• Code Generation. The prompt is fed into LLMs. By learning
from examples, LLMs first output an intermediate preliminary
and then generate the code.

where 𝑥𝑖 , 𝑦𝑖 , 𝑎𝑖 denote the requirement, the code, and the prelimi-
nary in 𝑖-th example, respectively.

3.2 Example Retrieval
As shown in Figure 3, the first step has two goals: (i) retrieve similar
programs and (ii) select a few examples from retrieved programs.
We design a retriever and a selector to achieve these goals, respec-
tively. The details of the two modules are shown as follows.

3.2.1 Retriever. Similar programs often have similar natural lan-
guage requirements [17, 25]. There, we take the input requirement
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Retrieval
corpus

Input
requirement

𝒙𝒕𝒆𝒔𝒕

Examples

{𝒙𝒊, 𝒚𝒊}𝟏𝒌
Test cases

API calls

More… Examples

{𝒙𝒊, 𝒕𝒊, 𝒚𝒊}𝟏𝒌

Preliminary 𝒕

Examples

Input
requirement

Prompt
Large language

model Outputs

(a) Example Retrieval (b) Prompt Construction (c) Code Generation

retriever selector
Preliminary

Source code

analyzer

Figure 3: An overview of AceCoder. Given a requirement, it selects examples from similar programs and constructs a prompt.
LLMs first output an intermediate preliminary and then generate the source code. 𝑥 , 𝑦, and 𝑡 denote requirements, programs,
and intermediate preliminaries, respectively.

Similar program-1: 
# find sequences of literals in a string.
def find_literals(text, pattern):
re.search(…)

Similar program-2:
# find sequences of an a followed by zero or more b's.
def text_match(text):
re.search(…)

Similar program-3:
# find sequences of numbers containing a decreasing 
trend or not.
def decreasing_trend(nums):
re.search(…)

Similar program-4:
# split a text at lowercase letters.
def split_upperstring(text):
return re.findall("[a-z][^a-z]*", text)

# Write a function to find sequences of lowercase 
letters joined with an underscore in a string.

Input requirement:

Figure 4: A requirement and its similar programs.

as a query to search for similar requirements in a retrieval corpus.
Then, we extract the corresponding programs as similar programs.

Specifically, we leverage an open-source search engine named
Lucene [5] to build our retriever and use the training data as a
retrieval corpus. We employ the BM25 score [40] as the retrieval
metric, which is widely used in previous studies [24, 47]. The BM25
score is a bag-of-words retrieval function and is used to estimate
the lexical-level similarity of two sentences. The more similar the
two sentences are, the higher the value of BM25 scores. In this
paper, the retriever outputs top-𝑚 similar programs based on the
BM25 score.

The reason for choosing BM25+Lucene is that they can achieve
good retrieval accuracy and have low complexity. Considering that
the retrieval corpus is often large-scale, a lightweight retriever is
closer to practical applications. In Section 5-RQ5, we also explore
other designs for the retriever and compare them to our design.

3.2.2 Selector. We can obtain top-𝑚 similar programs from the
retriever. However, the maximum input length of LLMs (e.g., 1024
tokens) and the inference budget are often limited. It leads that
the number of examples (i.e., 𝑘) in a prompt is also limited (e.g.,
three examples). It is necessary to further select 𝑘 programs from
retrieved results as examples.

Algorithm 1 The algorithm of our selector.
Inputs:

Input requirement 𝑥𝑡𝑒𝑠𝑡 , similar programs {(𝑥𝑖 , 𝑦𝑖 )}𝑚𝑖=1;
The number of examples 𝑘, 𝑘 <=𝑚, decay factor _.

Outputs:
Selected examples 𝑇, {(𝑥𝑖 , 𝑦𝑖 )}𝑘𝑖=1.

1: 𝑇 ← Empty Ordered List
2: 𝑆 ← Extract_ngrams_with_count(𝑥𝑡𝑒𝑠𝑡 )
3: for 𝑖 in {1, · · · ,𝑚} do
4: 𝑄 [𝑖] ← Extract_ngrams_with_count(𝑥𝑖 )
5: end for
6: while 𝑙𝑒𝑛(𝑇 ) < 𝑘 do
7: for 𝑖 in {1, · · · ,𝑚} do
8: 𝑆𝑐𝑜𝑟𝑒 [𝑖] ← Ngram_overlap_score(𝑆,𝑄 [𝑖])
9: end for
10: 𝑗 ← argmax(Score)
11: 𝑇 .𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑥 𝑗 , 𝑦 𝑗 ))
12: 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑛𝑔𝑟𝑎𝑚𝑠 ← 𝑆 ∩𝑄 [ 𝑗]
13: 𝑄 [ 𝑗] ← ∅
14: for 𝑛𝑔𝑟𝑎𝑚 ∈𝑚𝑎𝑡𝑐ℎ_𝑛𝑔𝑟𝑎𝑚𝑠 do
15: 𝑆 [𝑛𝑔𝑟𝑎𝑚]× = _

16: end for
17: end while
18: return 𝑇

A straightforward idea is to pick top-𝑘 similar programs as ex-
amples. However, as the programs are scored independently, we
find that retrieved results may contain redundant programs. Figure
4 shows a requirement and its similar programs. Similar programs
are ranked by the BM25 score. We can see that top-3 programs
are redundant, as all of them use an API (i.e., re.search) to find
sequences of a specific pattern. Program-4 contains a relevant regex
expression. However, as Program-4 has fewer overlapping 𝑛-grams
with the input requirement, it has a relatively small BM25 score.
Obviously, directly selecting top-𝑘 (e.g., top-3) retrieved programs
is unreasonable, as it will introduce redundant programs and ignore
more informative Program-4.

In this paper, we design a selector, which can filter out redundant
programs in retrieved results. The algorithm of the selector is shown
in Algorithm 1.We first extract all𝑛-grams of the input requirement
and all similar requirements (lines 2-5). In this paper, 𝑛 is set to
4 by default. Then, we calculate a recall-based ROUGE-𝑛 score
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[requirement]
# find the last occurrence of a character 
in a string.
[test case]
(“little”,‘t‘) ==> 3
(“assert”,‘s‘) ==> 2
[source code]
def last_occurence_char(string, char):

. . .
(more examples . . )
[requirement]
# remove first and last occurrence of a 
given character from the string.

(None,‘y‘) ==> None
(“Python”,‘x‘) ==> ‘Python’
(“machine”,‘e‘) ==> ‘machin’
[source code]
def remove_Occ(s, ch):

if s == None or ch == None:
return None

string = s
for i in range(len(string)):

if string[i] == ch:
(more lines . . .)
return string

(a) Prompt

(b) Output of a large language model

An
Example

Input
requirement

Preliminary

Source
code

Figure 5: Examples of our prompt and an LLM’s output.

between the input requirement and each similar requirement using
the following equations (lines 7-9).

𝑅𝑛 =

∑
𝑛_𝑔𝑟𝑎𝑚∈𝑆∩𝑄 𝑆 (𝑛_𝑔𝑟𝑎𝑚)∑
𝑛_𝑔𝑟𝑎𝑚∈𝑆 𝑆 (𝑛_𝑔𝑟𝑎𝑚)

(1)

𝑆𝑐𝑜𝑟𝑒 = exp( 1
𝑛

∑︁
𝑛

log(𝑅𝑛)) (2)

We get a similar requirement with the maximum score and add
its corresponding program to examples (lines 10-11). Then, the
matched 𝑛-grams between the similar requirement and the input
requirement are decayed by a factor _. This process (lines 6-17) is
repeated until the number of examples reaches the upper bound.
The motivation for the decay is to filter out redundant programs,
i.e., programs with the same matched 𝑛-grams. For example, in
Figure 4, we first add Program-1 to examples and then decay its
matched 𝑛-grams (e.g., find sequences of). Subsequent programs
with the same matched 𝑛-grams (i.e., Program-2 and Program-3) are
considered redundant and will be ignored. Program-4 contains new
matched 𝑛-grams (e.g., lowercase letters) and probably contains
new information. Thus, Program-4 will obtain a higher score and
is added to the examples.

By the above process, our selector filters out redundant programs
and selects 𝑘 similar programs as examples. In practice,𝑚 and 𝑘 are
small numbers, such as𝑚 = 50, 𝑛 = 3. Thus, the time complexity of
our selector is acceptable.

3.3 Prompt Construction
The goal of this step is to construct a prompt. As stated in Section
1, our guided code generation expects that LLMs can first output
an intermediate preliminary and then generate the final code. To
achieve this goal, we design a special prompt consisting of triple
examples (i.e., <requirement, preliminary, code>).

Specifically, we first use an analyzer to introduce preliminaries
{𝑡𝑖 }𝑘𝑖=1 into selected examples {𝑥𝑖 , 𝑦𝑖 }𝑘𝑖=1, obtaining triple examples
{𝑥𝑖 , 𝑡𝑖 , 𝑦𝑖 }𝑘𝑖=1. The preliminary is a software artifact for clarifying
requirements. Inspired by test-driven development [10], this paper
considers test cases as the preliminary by default. We also explore
other choices (e.g., APIs, method signature) in our experiments
(Section 5-RQ5). Then, we concatenate these triple examples with
the input requirement to construct a prompt.

Figure 5 (a) shows an example of our prompt. The prompt be-
gins with several examples and ends with a new requirement.
[requirement], [test case], and [source code] are special
tags that mark different parts in a triple.

We assume that test cases of examples are available. We think
this assumption is acceptable. The reasons are two-fold. First, there
are many public code generation datasets containing test cases,
e.g., MBPP [9] (474 samples), APPS [18] (5,000 samples), and Code-
Contest [27] (13,328 samples). We can extract training data from
these datasets and construct a retrieval corpus. Second, test-driven
software development is popular in real-world scenarios. We can
mine software repositories from open-source communities (e.g.,
GitHub [4]) and extract code snippets equipped with test cases.

3.4 Code Generation
In this step, we leverage an LLM to generate code based on the
prompt. Following previous studies [1, 14, 15, 32], we view the LLM
as a black-box generator and use it to complete the prompt. By
learning from examples in the prompt, LLMs will first output a
preliminary (e.g., test cases) and then generate the code based on
the preliminary and input requirement.

Figure 5 (b) shows an output of an LLM - CodeGeeX [1]. We can
see that CodeGeeX first generates some test cases and then imple-
ments a Python function. The test cases provide lots of valuable
information (e.g., input-output formats, invalid inputs) and guide
the subsequent code generation.

4 STUDY DESIGN
To assess AceCoder, we perform a large-scale study to answer six
research questions. In this section, we describe the details of our
study, including datasets, evaluation metrics, baselines, and base
large language models (LLMs).

4.1 Research Questions
Our study aims to answer the following research questions (RQs).

RQ1: How does AceCoder perform compared to existing
prompting techniques? This RQ aims to validate that AceCoder
has higher accuracy than existing prompting techniques in code
generation. We apply AceCoder and baselines to three LLMs and
measure their accuracy on three code generation benchmarks. The
evaluation metric is Pass@𝐾 .

RQ2: How does AceCoder perform compared to retrieval-
based models? AceCoder retrieves similar programs as examples
in prompts. Some existing studies [21, 36] also introduce informa-
tion retrieval to augment code generation. In this RQ, we compare
AceCoder to these retrieval-based models. The evaluation metric
is Pass@𝐾 .
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Table 1: Statistics of the datasets in our experiments.

Statistics MBPP MBJP MBJSP

Language Python Java JavaScript

# Train 384 383 383
# Dev 90 90 90
# Test 500 493 493

Avg. tokens in requirement 16.50 16.71 16.53
Avg. tokens in code 92.68 247.79 100.75

RQ3: Do human developers prefer code generated by Ace-
Coder? The ultimate goal of code generation is to assist human
developers in writing code. In this RQ, we hire 10 developers (in-
cluding industry employees and academic researchers) to manually
review the code generated byAceCoder and baselines. Wemeasure
the quality of code in three aspects, including correctness, code
smell, and maintainability.

RQ4: What are the contributions of different modules in
AceCoder? AceCoder contains three modules, i.e., a retriever,
a selector, and an analyzer. This RQ is designed to analyze the
contributions of three modules to the performance. We select a
base model, gradually introduce three modules, and observe the
fluctuations in accuracy.

RQ5: What are the better designs for three modules? This
RQ aims to validate the superiority of our designs for three modules
in AceCoder. Specifically, we explore multiple designs for three
modules and compare them to our designs.

4.2 Evaluation Datasets and Metrics
4.2.1 Datasets. We conduct experiments on three public code gen-
eration benchmarks, including the MBPP in Python, MBJP in Java,
and MBJSP in JavaScript. The statistics of the datasets are shown
in Table 1. The details of the datasets are described as follows.

• MBPP [9] contains 974 real-world programming problems that
are constructed by crowd-sourcing. Each problem contains a
natural language requirement, a single Python function, and
three test cases.
• MBJP [8] and MBJSP [8] both contain 966 crowd-sourced pro-
gramming problems in Java and JavaScript, respectively. Each
problem consists of a natural language requirement, an individual
function, and 3 test cases.

4.2.2 Metrics. Following previous code generation studies [1, 14,
15, 32], we employ Pass@𝑘 as our evaluation metric. Specifically,
we generate 𝑘 programs for each requirement. A requirement is
considered solved if any generated programs pass all test cases. We
compute the percentage of solved requirements in total require-
ments as Pass@𝑘 . In this paper, 𝑘 is set to 1, 3, and 5.

We notice that previous studies [17, 46] also use some match-
based metrics (e.g., BLEU [35]). These metrics are initially designed
for natural language generation and are poor in measuring the
functionality of programs [14]. Thus, we omit them in experiments.

4.3 Comparison Baselines
This paper is to propose a new prompting technique for code gen-
eration. Thus, we select three existing prompting techniques as
baselines.
• Zero-shot prompting [14, 32] directly feeds the input require-
ment into LLMs. Then, it extracts the code from LLMs’ outputs.
• Few-shot prompting [14] randomly selects several<requirement,
code> pairs as examples and constructs a prompt, which is fed
into an LLM. Then, it extracts the code from LLMs’ outputs.
• Chain-of-Thought (CoT) prompting [49] is a variant of few-
shot prompting. CoT prompting asks LLMs first to generate a
series of intermediate natural language reasoning steps and then
output the code.
AceCoder retrieves similar programs to assist LLMs in gener-

ating code. Some studies also introduce information retrieval to
augment code generation.We compareAceCoder to these retrieval-
based models.
• REDCODER [36] retrieves similar programs and fine-tunes a
pre-trained model - PLBART [7] to generate code based on the
requirement and similar programs.
• Jigsaw [21] searches for similar programs from API documenta-
tion and insert them into the prompts.

4.4 Base Large Language Models
We select three open-source LLMs as base models. The details of
the base models are shown as follows.
• CodeGeeX [1] is a multilingual LLM for source code with 13
billion parameters. CodeGeeX is pre-trained with a large cor-
pus of more than 20 programming languages (e.g., Python, Java,
JavaScript). We download the model weight from the official
website [2] and run CodeGeeX according to official instructions.
• CodeGen [32] is a family of LLMs for source code that is pre-
trained with extensive natural language and code data. We select
CodeGen-Multi-6.1B (CodeGen-6B) as a base model.
• InCoder [15] is a multilingual LLM for code generation. It is
pre-trained with 216 GB of code data. We use a version with 6.7
billion parameters (InCoder-6B) as a base model.
The reason why we do not choose the GPT series of models (e.g.,

ChatGPT [33]) as the base models is that they are closed source.
Although we can access GPT models through the OpenAI’s APIs,
these models are likely to be updated dynamically, affecting the
fairness and reproducibility of experiments. Thus, we leave them
to future work.

4.5 Implementation Details
Example Retrieval. For each dataset, the retrieval corpus is its
training data. We exclude the ground truths from the outputs of
our retriever. We first retrieve top-20 similar programs and then
use the selector to select three examples. For ensuring fairness, the
number of examples in AceCoder and baselines is the same.

Prompt Construction. In experimental datasets, the retrieval
corpus (i.e., training data) has been equipped with test cases by
data collector [8, 9]. Thus, the analyzer utilizes pre-defined rules to
extract test cases and transform retrieved programs into <require-
ment, test cases, code> triples.
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Table 2: The results of AceCoder and prompting baselines on three datasets. The values in parentheses are the relative
improvements compared to the SOTA baseline - few-shot prompting.

Base model Prompting Technique MBPP MBJP MBJSP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

CodeGeeX-13B

Zero-shot prompting 5.20 13.80 19.40 4.46 11.97 18.26 0.20 0.20 0.41
CoT prompting 12.60 23.40 30.20 14.40 28.19 33.67 11.35 21.10 25.96

Few-shot prompting 20.40 30.60 36.00 16.63 26.17 34.48 11.16 19.88 25.56
AceCoder 26.74 (↑ 31.1%) 36.43 (↑ 19%) 41.13 (↑ 14.2%) 28.38 (↑ 70.7%) 36.79 (↑ 40.6%) 41.54 (↑ 20.5%) 21.03 (↑ 88.4%) 31.44 (↑ 58.2%) 36.04 (↑ 41%)

CodeGen-6B

Zero-shot prompting 10.40 19.40 24.40 14.81 25.76 31.44 8.72 19.67 22.92
CoT prompting 13.00 21.00 26.00 13.59 25.35 31.24 11.56 20.08 24.54

Few-shot prompting 14.60 24.00 30.20 18.25 30.02 34.68 9.94 19.88 23.12
AceCoder 22.83 (↑ 56.4%) 34.58 (↑ 44.1%) 40.16 (↑ 33%) 22.45 (↑ 23%) 34.27 (↑ 14.2%) 40.96 (↑ 18.1%) 16.45 (↑ 65.5%) 27.31 (↑ 37.4%) 32.16 (↑ 39.1%)

InCoder-6B

Zero-shot prompting 4.20 11.40 16.20 2.23 5.88 9.13 3.65 5.88 8.11
CoT prompting 3.99 10.65 15.31 1.83 4.46 7.10 1.22 2.03 4.67

Few-shot prompting 12.80 22.80 28.20 10.95 23.53 26.17 12.78 22.52 27.79
AceCoder 20.16 (↑ 57.5%) 31.44 (↑ 37.9%) 34.10 (↑ 20.92%) 16.37 (↑ 49.5%) 29.89 (↑ 27%) 34.74 (↑ 32.7%) 15.97 (↑ 25%) 27.13 (↑ 20.5%) 30.65 (↑ 10.3%)

Code Generation. Following previous studies [14, 15, 32], we
use nucleus sampling [19] to decode programs from LLMs. The
temperature is 0.8 and the top-𝑝 is 0.95. The maximum generated
lengths are 400, 500, and 500, respectively. The sampling settings
of baselines are the same as the ones of AceCoder.

5 RESULTS AND ANALYSES
In the first research question, we evaluate the performance of Ace-
Coder with respect to existing prompting techniques.
RQ1: How does AceCoder perform compared to existing
prompting techniques?

Setup.We apply AceCoder and three prompting baselines to
three base models (Section 4.4). Then, we use Pass@k to measure
their performance on three benchmarks (Section 4.2).

Results. The results on three benchmarks are shown in Table 2.
The values in parentheses are relative improvements compared to
the SOTA baseline - few-shot prompting.

Analyses. (1)AceCoder performs better than baselines on three
benchmarks. Compared to the SOTA baseline - few-shot prompt-
ing, in terms of Pass@1, AceCoder outperforms it by up to 56.4%
in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. Pass@1 is a very
strict metric and it is difficult to improve. The significant improve-
ments prove the superiority of AceCoder in code generation. We
attribute the improvements to our novel techniques, i.e., example re-
trieval and guided code generation. The retrieved examples contain
many relevant code elements teaching LLMs “how to write”. Guided
code generation asks LLMs to analyze requirements that tell LLMs
“what to write”. (2) AceCoder is effective in LLMs with different
sizes and different programming languages. Compared to few-shot
prompting, in terms of Pass@1, AceCoder improves CodeGeeX-
13B by up to 88.4%, CodeGen-6B by up to 65.5%, and InCoder-6B by
up to 57.5%. In particular, we find that an LLMwith AceCoder even
outperforms larger LLMs. For example, in the MBJSP, InCoder-6B
withAceCoder outperforms CodeGeeX-13B with few-shot prompt-
ing. It proves the potential of AceCoder. Besides, AceCoder is
language-agnostic and is effective in multilingual code generation
(i.e., Python, Java, and JavaScript).

Answer to RQ1: AceCoder outperforms existing prompt-
ing techniques on three benchmarks. In terms of Pass@1,
AceCoder outperforms the SOTA baseline by up to 56.4%
in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. Besides, Ace-
Coder is effective in LLMs with different sizes. It improves
CodeGeeX-13B by up to 88.4%, CodeGen-6B by up to 65.5%,
and InCoder-6B by up to 57.5%. The significant improvements
prove the effectiveness of AceCoder in code generation.

RQ2: How does AceCoder perform compared to retrieval-
based models?

Setup. In this RQ, we compare AceCoder to two retrieval-based
baselines, including REDCODER [36] and Jigsaw [21]. Baselines
and AceCoder use the same retrieval corpus. Because REDCODER
requires fine-tuning, we follow the official instructions and use the
training data to train REDCODER.

Results. The results on three benchmarks are shown in Table 3.
The values in parentheses are relative improvements compared to
the SOTA baseline - Jiagsaw.

Analyses. AceCoder outperforms retrieval-based baselines in
three benchmarks. Compared to the SOTA baseline - Jigsaw, in
terms of Pass@1,AceCoder outperforms it by up to 13.1% in MBPP,
23.44% in MBJP, and 15.8% in MBJSP. Jigsaw also retrieves simi-
lar programs for making prompts. The improvements show the
effectiveness of our selector and analyzer. The selector filters out
redundant similar programs and further improves the quality of
examples. The analyzer constraints LLMs to first analyze require-
ments and then generate code. Besides, we notice that REDCODER
has poor accuracy in three benchmarks. This is because the training
data is limited, and fine-tuning easily leads to overfitting. It validates
our motivation that introducing similar programs by prompting is
a more suitable approach to LLMs.

Answer to RQ2:AceCoder outperforms retrieval-based base-
lines. Specifically, it outperforms the SOTA baseline - Jigsaw
by up to 13.1% in MBPP, 23.44% in MBJP, and 15.8% in MBJSP.

RQ3: Do human developers prefer code generated by Ace-
Coder?

Setup. The ultimate goal of code generation is to assist human
developers in writing code. Thus, we conduct a human evaluation
to measure programs generated by AceCoder and baselines. We
follow settings of human evaluation in previous studies [16, 25].
We have carefully checked the evaluation settings and think our
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Table 3: The comparison of retrieval-based baselines and AceCoder. The values in parentheses are relative improvements
compared to the SOTA baseline - Jigsaw.

Approach MBPP MBJP MBJSP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

REDCODER 3.37 6.21 9.74 4.46 7.51 9.94 4.87 10.34 12.78
Jigsaw 23.65 33.97 37.78 22.99 33.26 36.95 18.16 28.79 34.08

AceCoder 26.74 (↑ 13.1%) 36.43 (↑ 7.2%) 41.13 (↑ 8.9%) 28.38 (↑ 23.44%) 36.79 (↑ 10.61%) 41.54 (↑ 12.42%) 21.03 (↑ 15.8%) 31.44 (↑ 9.2%) 36.04 (↑ 5.8%)

Table 4: The results of ablation study. The values in parentheses are relative improvements compared to few-shot promopting.

Retriever Selector Analyzer MBPP MBJP MBJSP
Pass@1 (%) Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

20.40 30.60 36.00 16.63 26.17 34.48 11.16 19.88 25.56
24.00 (↑ 17.6%) 34.60 (↑ 13.1%) 38.20 (↑ 6.1%) 23.35 (↑ 40.4%) 33.67 (↑ 28.7%) 37.22 (↑ 7.9%) 18.66 (↑ 67.2%) 29.18 (↑ 46.8%) 34.89 (↑ 36.5%)
24.89 (↑ 22%) 35.02 (↑ 14.4%) 39.14 (↑ 8.7%) 25.03 (↑ 50.5%) 34.47 (↑ 31.7%) 39.24 (↑ 13.8%) 19.73 (↑ 76.8%) 30.16 (↑ 51.7%) 35.34 (↑ 38.3%)
26.74 (↑ 31.1%) 36.43 (↑ 19%) 41.13 (↑ 14.2%) 28.38 (↑ 70.7%) 36.79 (↑ 40.6%) 41.54 (↑ 20.5%) 21.03 (↑ 88.4%) 31.44 (↑ 58.2%) 36.04 (↑ 41%)

Table 5: The results of human evaluation. The values in paren-
theses are the relative improvements compared to the SOTA
baseline - few-shot prompting.

Approach Correctness Code smell Maintainability

Zero-shot prompting 0.3167 1.1033 1.2749
CoT prompting 0.6671 1.1405 1.4479
Few-shot prompting 0.9769 1.2148 1.5420
AceCoder 1.5802 (↑ 61.8%) 1.6241 (↑ 33.7%) 1.7544 (↑ 13.8%)

settings are reliable. We manually evaluate programs in three as-
pects:
• Correctness (whether the program satisfies the given re-
quirement). 0 point: the program is totally inconsistent with the
requirement. 1 point: the program is implemented, but misses
some details. 2 points: the program is correctly implemented.
• Code Smell (whether the program contains bad code smell).
0 point: There are better solutions in terms of performance. Or
there is serious code smell. 1 point: Some details are not in place.
There is code smell of low severity. 2 points: No obviously better
code in terms of performance exists. If possible, resources are
released accordingly. No obvious code smell.
• Maintainability (whether the implementation is standard-
ized and has good readability). 0 point: The program does not
follow a consistent specification, or there are many meaningless
names in variable naming, or there are certain repetitions and
redundant codes. 1 point: The program implementation meets
certain specifications. But some variable names can be further
refined. 2 points: The program implementation is relatively stan-
dardized, the variable naming is basically semantically straight-
forward, and the readability is better.
We explain the above aspects to evaluators through some ex-

amples. After discussing with evaluators, we set the score of each
aspect to an integer, ranging from 0 to 2 (from bad to good). ForAce-
Coder and baselines, we select a fixed base model (i.e.,CodeGen-2B)
and collect 200 generated programs per approach. Finally, we obtain
1,000 programs for evaluation. We invite 10 developers with 3-5
years of development experience to evaluate the generated pro-
grams in the form of a questionnaire. The 1,000 code snippets are
divided into 5 groups, with each questionnaire containing one group.
The programs are randomly shuffled and anonymously reviewed
by evaluators. Each group is evaluated by two evaluators, and the

final score is the average of two evaluators’ scores. Evaluators are
allowed to search the Internet for unfamiliar concepts.

Results. The results of the human evaluation are shown in
Table 5. The values in parentheses are the relative improvements
compared to the SOTA baseline - few-shot prompting.

Analyses.AceCoder is better than all baselines in three aspects.
Specifically, our AceCoder outperforms the SOTA baseline - few-
shot prompting by 61.8% in correctness, 33.7% in code smell, and
13.8% in maintainability. The improvements show that AceCoder
has better usability and is promising in practical applications. Be-
sides, all the p-values are substantially smaller than 0.05, which
shows the improvements are statistically significant.

Answer to RQ3: Human evaluation shows that human devel-
opers prefer programs generated byAceCoder. It outperforms
the SOTA baseline by 61.8% in correctness, 33.7% in code smell,
and 13.8% in maintainability.

RQ4: What are the contributions of different modules in
AceCoder?

Setup. AceCoder contains three modules, i.e., a retriever, a se-
lector, and an analyzer. This RQ is designed to analyze the contribu-
tions of three modules to the performance. We select CodeGeeX as
the base model and conduct an ablation study by gradually adding
three modules.

Results. The results are shown in Table 5. and represent
adding and removing correspondingmodules, respectively.Without
three modules, the base model uses few-shot prompting to generate
code. After adding a retriever, the base model selects top-𝑘 similar
programs as examples and directly generates code. After adding a
selector, the base model selects 𝑘 examples from similar programs
and then generates code. After further introducing an analyzer, the
base model uses AceCoder to generate code.

Analyses. All modules are necessary for AceCoder to perform
the best. After adding a retriever, the performance of the base mod-
els is improved. In terms of Pass@1, the retriever brings a 17.6%
improvement in MBPP, a 40.4% improvement in MBJP, and a 67.2%
improvement in MBJSP. It validates our motivation that retrieved
programs contain lots of useful information that benefits code gen-
eration. After adding a selector, the performance of the base model
is further improved. It shows that our selector can effectively fil-
ter out redundant programs in retrieved results and improve the
quality of examples. After further introducing an analyzer, the base
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model achieves better results. In terms of Pass@1, the base model
is improved by 31.1% in MBPP, 70.7% in MBJP, and 88.4% in MBJSP.
It proves the effectiveness of guided code generation in analyzing
requirements.

Answer to RQ4: Three modules are essential for the per-
formance of AceCoder. The performance of CodeGeeX on
three benchmarks is substantially improvement by gradually
adding three modules.

RQ5: What are the better designs for three modules in Ace-
Coder?

Setup. As stated in Section 3.1, AceCoder contains three mod-
ules, i.e., a retriever, a selector, and an analyzer. In this RQ, we
explore different designs for three modules and validate the superi-
ority of our designs. We select CodeGeeX as the base model. The
evaluation settings are shown as follows.

(1) A retriever takes the input requirement as a query and searches
for similar programs from a retrieval corpus. We design two choices
for the retriever:
• Dense retriever. It uses a neural encoder to convert the require-
ments into vector representations. Then, it retrieves similar pro-
grams based on the similarity of vector representations. In exper-
iments, we use an off-the-shelf natural language representation
model [39] as the encoder.
• Sparse retriever (AceCoder). As stated in Section 3.2, it uses the
BM25 score as the retrieval metric. BM25 score can measure the
lexical-level similarity of two requirements.
(2) A selector aims to score similar programs and filter redundant

programs. For the score function in the selector (line 8 of Algorithm
1), we design two choices:
• BLEU [35]. It extracts overlapping 𝑛-grams between the input
requirement and the similar requirement. Then, it computes the
precision of 𝑛-grams in the similar requirement.
• ROUGE-N [28] (AceCoder). It extracts overlapping 𝑛-grams be-
tween the input requirement and the similar requirement. Then,
it computes the recall of 𝑛-grams in the input requirement.
(3) An analyzer is to introduce preliminaries into examples. A

preliminary is a special software artifact that benefits the require-
ment understanding. For the preliminary, we design three choices:
• API sequence. APIs are important elements in code and reflect the
functionality of the code. Pre-designing APIs help LLMs to think
about how to solve requirements. We use a program analysis tool
[6] to extract APIs from examples and view the API sequence as
a preliminary (e.g., open, numpy.array, write).
• Method signature. It contains input-output parameters and their
types, which clearly indicate the inputs and outputs of require-
ments. Thus, we consider the method signature as a preliminary
(e.g., def floor_Min(A: int, B: int, N: int)).
• Test cases (AceCoder). Test cases exactly define the requirement,
including the input-output format, edge cases, and functional-
ity. We consider several test cases as the preliminary, such as
(“Python”,“o”) -> 1); (“little”,“t”) -> 2);.
Results and Analyses. The results are shown in Table 6. “w/”

is the abbreviation of with. (1) A dense retriever is comparable to
our retriever, but has a lower efficiency. In Table 6, compared to

AceCoder, AceCoder with dense retriever has a slight drop in
performances. It indicates that code generation prefers lexically
similar programs, which contain lots of reusable content. Similar
findings can be found in code completion work [29]. Besides, the
dense retriever has a higher complexity and is hard to be applied to
a large-scale retrieval corpus. (2) The BLEU selector prefers shorter
examples and is suboptimal. Compared to AceCoder, AceCoder
with BLEU selector has an obvious decrease in accuracy. We inspect
some failed samples and find that the BLEU selector prefers shorter
examples. This is because BLEU is the precision of 𝑛-gram in similar
requirements. The shorter the similar requirement, the higher the
BLEU. It leads that the selector tends to select short programs as
examples and ignores some informative but long examples. (3) Test
cases are more suitable to the preliminary than APIs and method
signatures. We carefully inspect some cases. First, many require-
ments in benchmarks do not require APIs or only involve a few
trivial APIs (e.g., range, split, and len). It causes that generated APIs
bring limited benefits to code generation. Second, by generating
method signatures, LLMs are asked to think about the input-output
format, which benefits code generation. But method signatures miss
other necessary details, such as edge cases. AceCoder considers
test cases as the preliminary. Test cases are common in code files.
Thus, it is feasible for LLMs trained with extensive code data to
generate plausible test cases. With the guidance of test cases, LLMs
can comprehensively understand requirements and determine re-
lated details (e.g., input-output formats, boundary inputs, outliers),
thus generating more correct programs.

Answer to RQ5:We explore the other four designs for Ace-
Coder and compare them to our designs. Results on three
benchmarks show the superiority of our design.

6 DISCUSSION
6.1 AceCoder vs. CoT prompting
Our guided code generation is similar to Chain-of-Thought (CoT)
prompting. Both approaches ask LLMs to first generate an interme-
diate result and then output the final code. The intermediate result
in CoT prompting is a series of natural language steps describing
how to write code step by step. In contrast, AceCoder leverages
some software artifacts (e.g., test cases) as the intermediate result.

We argue that our guided code generation is superior to the
CoT in code generation. Table 2 shows the comparison results
between AceCoder and CoT prompting. CoT prompting achieves
slight improvements over few-shot prompting and is even worse
than zero-shot prompting. We inspect some failed samples and
summarize the main reason. We find that CoTs describe how to
write code in a series of steps almost at the same level as code. The
LLMs for source code are mainly pre-trained with code data and
are relatively weak in natural language generation. The generated
CoTs often contain ambiguities or errors and negatively affect the
subsequent code generation. Similar findings can be found in the
original paper of CoT prompting [49]. Compared to CoT prompting,
AceCoder uses a software artifact (i.e., test cases) as intermediate
preliminaries. Compared to natural languages, test cases are more
suitable to clarify requirements and contain fewer ambiguities.
Besides, test cases are common in real-world code files, and LLMs
have abilities to generate plausible test cases. Thus, AceCoder is
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Table 6: The performance of AceCoder with different designs. “w/” is the abbreviation of with.

Approach MBPP MBJP MBJSP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

AceCoder 26.74 36.43 41.13 28.38 36.79 41.54 21.03 31.44 36.04
w/ Dense retriever 26.63 36.42 41.10 28.16 36.55 41.32 20.88 31.27 35.94
w/ BLEU selector 25.61 35.71 40.74 27.86 35.91 40.77 20.15 30.42 35.47
w/ API analyzer 25.10 35.24 40.38 26.44 35.16 40.12 19.86 30.23 35.41
w/ signature analyzer 26.14 35.96 40.89 27.35 36.11 40.98 20.58 30.89 35.86

different from CoT prompting and is more promising than CoT
prompting in code generation.

6.2 AceCoder vs. Rank Techniques
Some recent studies [13, 20] propose rank techniques to improve
the performance of LLMs on code generation. Given a requirement,
they first sample many programs from LLMs and then use test cases
or neural networks to rerank sampled programs.

In this paper, we do not directly compare our approach to rank
techniques. The reason is that AceCoder and rank techniques
have different focuses and they are complementary. Our work is
a new prompting technique that improves the accuracy of LLMs
in code generation. Rank techniques do not care about LLMs and
aim to select the best one from LLMs’ multiple outputs. In practice,
users can use AceCoder to generate many programs and then
use rank techniques to pick a final output. Thus, we omit them in
experiments.

6.3 Threats to Validity
There are two main threats to the validity of our work.

The generalizability of experimental results. To mitigate
this threat, we carefully select the experimental datasets, metrics,
and baselines. Following previous studies [8, 13], we pick three rep-
resentative code generation benchmarks. They are collected from
real-world software projects and cover three popular programming
languages (i.e., Python, Java, and JavaScript). For evaluation met-
rics, we select a widely used metric - Pass@𝑘 (𝑘 = 1, 3, 5). Pass@𝑘
is an execution-based metric that utilizes test cases to check the
correctness of programs. We select existing prompting techniques
and retrieval-based models as comparison baselines. We pick three
representative LLMs as base models [1, 14, 15, 32], which scale from
6B to 13B. We apply AceCoder and baselines to base models and
evaluate their performance on three datasets using Pass@k. To
ensure fairness, we run each approach three times and report the
average results.

The impact of retrieved programs. The retrieved programs
are important elements in AceCoder. Intuitively, when retrieved
programs are less relevant to input requirements, the performance
of our approach may suffer. To address this threat, we have two
thoughts. (1) A large-scale study on 13.2 million real code files found
the proportion of reused code is up to 80% [31]. Thus, we believe that
it is quite possible to retrieve similar programs in real development
scenarios. (2) Even if retrieved programs are less relevant to input
requirements, AceCoder degrades to few-shot prompting at worst.
In most cases, AceCoder is superior to few-shot prompting.

7 RELATEDWORK
Large Language Models (LLMs) for Code Generation are large-
scale neural networks pre-trained on a large corpus of natural lan-
guage and programming language. With the development of LLM
research, current Code LLMs can be divided into two categories:
standard language models and instruction-tuned models.

Standard Language models are pre-trained on the raw corpus
with the next-token prediction. They can continually complete
the given context, which makes them useful in tasks like code
completion and code generation. With the success of GPT series
[11, 37, 38] in NLP, OpenAI adapts similar idea into the domain of
source code, and fine-tunes GPT models on code to produce closed-
source Codex [14]. There are multiple open-source attempts to
replicate its success, e.g., CodeParrot [3], CodeGen [32], CodeGeeX
[1], InCoder [15], StarCoder [26] and CodeT5+ [45].

Instruction-tunedmodels are models fine-tuned using instruc-
tion tuning [48]. Instruction tuning helps models to follow users’
instructions. OpenAI’s ChatGPT [33] is trained by Reinforcement
Learning with Human Feedback (RLHF) [34], making it capable
of both natural language tasks and programming tasks. Due to its
enormous influence and closed-sourceness, many researchers try to
create open-source ChatGPT alternatives using instruction tuning
and its variants. Alpaca [41] is LLaMA [42] fine-tuned using self-
instruct [44] and ChatGPT feedback. Code Alpaca [12] is LLaMA
fine-tuned using self-instruct and ChatGPT feedback with more
programming-focused instructions. WizardCoder [30] is StarCoder
[26] fine-tuned using Evol-Instruct [50] and ChatGPT feedback
with Code Alpaca’s dataset as seed dataset. InstructCodeT5+ [45]
is CodeT5+ [45] fine-tuned on Code Alpaca’s dataset.

Prompting Techniques. LLMs are too large to fine-tune, so
researchers need to find a new way to adapt the LLMs on the
downstream tasks. Prompting techniques are a popular approach to
leverage LLMs to generate code by inputting a special prompt.

Early, researchers proposed zero-shot prompting and few-shot
prompting. Zero-shot prompting concatenates a task instruction
(e.g., please generate a program based on the requirement)
and a requirement together to make the prompt. Based on the
zero-shot prompting, few-shot prompting further adds several
⟨ requirement, code ⟩ pairs to the prompts, so that LLMs can learn
code generation from given examples. Chain-of-Thought (CoT)
prompting [49] is a recently proposed prompting technique. CoT
asks LLMs first to generate CoTs (i.e., intermediate natural lan-
guage reasoning steps) and then output the final code. It allows
LLMs to first design a solving process that leads to the code. CoT
has achieved the SOTA results in natural language generation and
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sparked lots of follow-up research, such as self-consistency prompt-
ing [43], least-to-most prompting [52]. But these prompting tech-
niques are designed for natural language generation and bring
slight improvements in code generation.

8 CONCLUSION AND FUTUREWORK
We propose a new prompting technique named AceCoder to im-
prove the performance of LLMs on code generation. AceCoder
designs two novel techniques (i.e., guided code generation and
example retrieval) to help LLMs understand requirements and im-
plement programs. Guided code generation asks LLMs to output
an intermediate preliminary (e.g., test cases) before generating pro-
grams. The preliminary helps LLMs understand requirements and
guides the next code generation. Example retrieval selects simi-
lar programs as examples, which provide many reusable elements
for program implementation. We apply AceCoder to three LLMs
and conduct experiments on three benchmarks. Results show that
AceCoder significantly outperforms the SOTA baselines.

In the future, we will explore how to improve the usability of
LLMs in code generation. For example, how to teach LLMs to use
unseen frameworks without re-training.
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